''put hypergeometric on board'': \(x^y - xy + 2xy - \frac{1}{2}y^2/y + y = 0 \)

- take \(y = x^p \) \(a_n = 0 \), \(x^r \) \(p \in \mathbb{R} \)

\[p = \frac{1}{2}, y = x^{2n} \]

\[y_n = \sum_{n=0}^{\infty} a_n z^n \]

\[\Rightarrow \text{converges} \]

\[\Rightarrow \text{converges} \]

7701 Lecture #8

1. Class do: \(\int 1 + e^{\beta x} dx \) with \(\beta \) real and \(\beta > \text{Re}(a) \)

2. Why are these relevant?

3. Questions to answer:
 - How to choose \(\alpha \)? Want \(\int \alpha \to \int \alpha \) \(e^{\beta x + i\alpha} \) \(1 + e^{\beta x + i\alpha} \) \(\Rightarrow \frac{\alpha(x + \pi)}{1 + e^{\beta x + i\alpha}} \)
 - What is simplest choice for \(\beta \)?
 - Do the integrals on \(C_2 \) and \(C_4 \) vanish? Why?
 - As \(R \to \infty \), what was? (and why do the conditions matter?)
 - Where are the poles? Does \(e^{az} \) have singularities?
 - Where does \(1 + e^{\beta z} \) have zeros for real \(\beta \)?

4. How do you tell Mathematica that \(\beta > \text{Re}(a) > 0 \)?
 - Assumptions \(\Rightarrow \beta > \text{Re}(a) > 0 \)
 - Use this in Integrate Function.
Flash back to (13) on dispersion relations. (Cahill 5.19)

Use of \(\frac{A}{x-x_0-i\epsilon} = \frac{1}{x-x_0} + \text{principal value} \)

\[\text{note: } \text{when } (x-x_0) - i\epsilon \text{ has } -i\epsilon \]

\(\text{pole in upper half plane} \) \(\text{real functions} \)

Apply to a complex function \(f(z) = U(z) + iV(z) = \Re[f(z)] + i\Im[f(z)] \)

For which \(f(z) \) is analytic in the upper half \(z \) plane.

- Key example: dielectric constant of a material and \(f(z) \rightarrow 0 \) in the upper half plane.

Run for any \(Z_0 \) in the upper plane, \(z \to \infty \)

\[\text{This contour as } R \to \infty, \text{ (real part vanishes)} \]

\[\text{But now let } Z_0 = x_0 + i\epsilon \text{ with } x_0 \text{ real (certainly this is in upper half plane)} \]

\[\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(0)}{x-x_0-i\epsilon} \, dx = f(x_0) \] (because \(f(z) \) analytic so \(f(x+it) = f(x) \) \(\text{as } t \to 0 \))

\[\therefore \frac{1}{2\pi i} \int_{-\infty}^{\infty} f(0) \, dx + \frac{1}{2\pi i} \int_{-\infty}^{\infty} f(x_0) \delta(x-x_0) \, dx = f(x_0) \]

\[\therefore f(x_0) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(0)}{x-x_0} \, dx \]

\[\therefore U(x_0) + iV(x_0) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{u(x)}{x-x_0} \, dx + \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{v(x)}{x-x_0} \, dx \]

Separate real and imaginary: \(U(x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{u(x)}{x-x_0} \, dx \) \(\text{real part is integral over} \)

\(V(x_0) = \frac{-i}{2\pi} \int_{-\infty}^{\infty} \frac{u(x)}{x-x_0} \, dx \) \(\text{imaginary part is integral over} \)
Comments on differential equation problems in 5#3:

Problems 2 and 3 are basic applications of the Frobenius method; we'll recap, but remember the initial equation is its starting point.

- one is a power series (you are only to find its regular solution).
- the other has power series times non-integer powers of x.
- you are expected to recognize common series; sum the series for functions like e^x, sin x, as x, etc.
- For Mathematica, see the "Solving some 5#3 differential equations" on the example notebook page.

Problem 4: $(1+x)y''+(3+2x)y'+(3+6x)y=0$

- look for $x>0$ solution.
- do (53) for asymptotic methods.
- what does "direct integration" mean?

eg. $V'=V$, let $w=V \Rightarrow \frac{dw}{w}=dx \Rightarrow \int \frac{dw}{w} = \ln w \Rightarrow w = e^{\ln w} = x$

$\Rightarrow \ln w = w(0) \Rightarrow w(x) = w(0) e^x$

$\Rightarrow V(x) = V(0) e^x \Rightarrow$ integrate again: $V(x) - V(0) = V(0) e^x$

Problem 5: $y''+(l+\frac{1}{4})y=0$ Take $y(0)=e^{-ax^2} x^a$ and find a choice of a that gives a simpler equation for V (i.e., no x^4).

In general: extract the dominant part of the solution and then solve the rest approximately (or numerically).

Convergence of power series solutions to differential equations: out to singular points. Check Legendre: $y'' - \frac{2x}{1-x^2} y' + \frac{\Delta_l(x+a)}{1-x^2} y = 0$

Ratio test for power series at given x: $\lim_{n \to \infty} \frac{|a_n (x-x_0)|}{|a_{n+1}|}$

Legendre: $\frac{\Delta_{l+2}}{\Delta_l} = \left(\frac{j+1}{(j+2)} \right) \frac{a_{l+2}}{a_j} \Rightarrow |(1/(j+1)_{j+1} x(x+a)^2)| \frac{a_{l+2}}{(j+2)(j+2)/j} \Rightarrow 1 \Rightarrow |x|<1$
9/9/13

Reply: Frobenius method and the indicial equation

- **General results for series solutions.**

1. **If** $x = x_0$ **is an ordinary point** of
 \[y''(x) + P(x)y'(x) + Q(x)y(x) = 0 \]
 (so $P(x)$ and $Q(x)$ are analytic at x_0), then the general solution is
 \[y(x) = C_1 \left(x - x_0 \right)^a + C_2 \left(x - x_0 \right)^b \]
 linearly independent (what does that mean?)

 - The radius of convergence of each series is at least as great as the distance from x_0 to the nearest singular point of the differential equation.

2. If we have singular points that are irregular, e.g., x_0 and x_0 diverge at x_0, and $\lim_{x \to x_0} x^k (x - x_0)^n$ respectively, then life is complicated. E.g., on $PS \# 4 \Rightarrow$ essential singularity in solution, uncommon in equations for physical systems.

3. If $x = 0$ is a regular singular point of
 \[y''(x) + p(x)y'(x) + q(x)y(x) = 0 \]
 and p_1 and p_2 are the roots of the indicial equation with $p_1 \neq p_2$, then
 \[y_1(x) = x^{p_1} \sum_{n=0}^{\infty} c_n x^n \quad \text{and} \quad y_2(x) = x^{p_2} \sum_{n=0}^{\infty} b_n x^n \]
 \[(a_1 + b_1) = 0 \]

4. If $p \neq q$, then
 \[y_1(x) = x^{p_1} \sum_{n=0}^{\infty} c_n x^n \quad \text{and} \quad y_2(x) = x^{p_2} \sum_{n=0}^{\infty} b_n x^n \]
 where c can be zero.

5. Do not use PS and lowest equation in x; (fig.) $a_1 = 0$ to find more a values. Use it with p_1 and p_2 to decide if $a_1 = 0$.
 E.g., if $p_1 = 0$, then $a_1 = 0$ is required; if $p_2 = 0$, then a_2 can be anything.
9/9/13

The Gamma Function \(\Gamma(x) \) — [see Chap. 6 in Arfken, Sect. 2.9 in Lea]

In the solution to Laguerre's equation in problem 2 of Arfken, you find the series solution:

\[
y(x) = a_0 \sum_{n=0}^\infty \frac{(-1)^n a(x-1) \cdots (x-(n-1))}{(n!)^2} x^n
\]

How could we write the \(n \)th term more generally?

Consider \(x = k \), an integer,

\[
\Rightarrow 1 \cdot (k-1) \cdots (k-(n-1)) = k(k-1) \cdots (k-(n-1))(k-n)(k-n-1) \cdots 3 \cdot 2 \cdot 1 \over (k-n)(k-(n+1)) \cdots 3 \cdot 2 \cdot 1
\]

\[
= \frac{k!}{(k-n)!}
\]

Can we generalize? Yes, with \(\Gamma(z+1) = \Gamma(z) \), we have \(\Gamma(x+1) \) is equal to \(x(x-1)(x-(n-1)) \) part.

The Gamma function is defined as

\[
\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} \, dt \quad \text{for } x > 0 \ (\text{real})
\]

\[
\Gamma(n) = \int_0^\infty e^{-t} t^{n-1} \, dt = -e^{-t} \bigg|_0^n = 1
\]

We can integrate by parts to show that \(\Gamma(x+1) = x \Gamma(x) = x(x-1) \Gamma(x-1) \)

\[
\Gamma(n+1) = n!
\]

\[
\text{eg. } u = e^{-t} \Rightarrow du = -e^{-t} \, dt, \quad dv = t^{x-1} \, dt \Rightarrow v = \frac{t^x}{x}
\]

\[
\Rightarrow \Gamma(x) = \frac{e^{-t} t^x}{x} \bigg|_0^\infty + \int \frac{t^x}{x} e^{-t} \, dt = \frac{1}{x} \Gamma[x+1]
\]
\[\frac{1}{\sqrt{\pi}} \int_0^\infty e^{-t^2} dt = 2 \int_0^\infty e^{-u^2} \frac{du}{\sqrt{u}} = \int_0^\frac{\pi}{2} e^{-\cos^2 \theta} \sin \theta d\theta = \frac{\sqrt{\pi}}{2} \]

Claim: \(\int e^{x^2} dx = \frac{1}{2} \Gamma \left(\frac{1}{2} \right) \Gamma \left(\frac{1}{2} \right) = \frac{\sqrt{\pi}}{2} \) [switch to \(u = x^2 \)] and \(\sqrt{\frac{x}{\pi}} e^{-x/2} dx = \left(\frac{1}{x} \right) \Gamma \left(\frac{1}{2} \right) = \frac{\sqrt{\pi}}{2} \).

How do we define the integral for \(\Re(z) > 0 \)? Use a contour integral.

Let \(\gamma = \gamma_1 \gamma_2 \gamma_3 \), use this contour so that we include the top of the branch backwards and the bottom from \(\Re(z) = 0 \) to \(\infty \), with \(\theta = \pi \).

The little circle around the branch point vanishes:

\[\int e^{-t} e^{t \cdot \gamma} dt = \int_0^{2\pi} \left(e^{i \theta} \right)^{z-1} e^{-i \theta} e^{i \theta} dt = \int_0^{2\pi} e^{i \theta} e^{i \theta} \left(e^{i \theta} \right)^{z-1} e^{-i \theta} \]

\[= \int_0^{2\pi} e^{i \theta} e^{i \theta} \left(e^{i \theta} \right)^{z-1} e^{-i \theta} = 0 \text{ for } \Re(z) > 0 \]

On the bottom of the branch, we get an extra \(e^{i \pi z} \), so

\[\gamma(z) = \frac{1}{e^{i \pi z} - 1} \int \frac{e^{-t} e^{t \cdot \gamma}}{e^{2\pi}} \]

when \(z \) is positive integer, defined as limit. There are simple poles for \(z \) non-negative integer.

Ok, but what about \(\left(\gamma - \frac{1}{2} \right) \)? Define by analytic continuation using \(\gamma(z) = \gamma(z+1)/z \) sufficiently many times. E.g. \((\gamma - \frac{1}{2}) = \gamma \left(\frac{1}{2} \right)/\frac{1}{2} \)

(repeat until \(\Re(z+1) > 0 \))