Lecture 2
Binomial and Poisson Probability Distributions

Binomial Probability Distribution

Consider a situation where there are only two possible outcomes (a Bernoulli trial)

Example:
- flipping a coin
 - head or tail
- rolling a dice
 - 6 or not 6 (i.e. 1, 2, 3, 4, 5)

Label the possible outcomes by the variable k

find the probability $P(k)$ for event k to occur

Since k can take on only 2 values we define those values as:
- $k = 0$ or $k = 1$

let $P(k = 0) = q$ (remember $0 \leq q \leq 1$)

something must happen

$P(k = 0) + P(k = 1) = 1$

$P(k = 1) = p = 1 - q$

write the probability distribution $P(k)$ as:

$P(k) = p^k q^{1-k}$ (Bernoulli distribution)

coin toss: define probability for a head as $P(1)$

$P(1) = 0.5$

dice rolling: define probability for a six to be rolled as $P(1)$

$P(1) = 1/6$

$P(0) = 5/6$ (not a six)
What is the mean (μ) of $P(k)$?
\[
\mu = \sum_{k=0}^{1} k P(k) = \sum_{k=0}^{1} k \cdot P(k) = 0 \cdot q + 1 \cdot p = p
\]

What is the Variance (σ^2) of $P(k)$?
\[
\sigma^2 = \sum_{k=0}^{1} k^2 P(k) - \mu^2 = \sum_{k=0}^{1} k^2 \cdot P(k) - p^2 = 0^2 \cdot P(0) + 1^2 \cdot P(1) - p^2 = p \cdot p^2 = p(1 - p) = pq
\]

Suppose we have N trials (e.g. we flip a coin N times)
- what is the probability to get m successes (= heads)?

Consider tossing a coin twice. The possible outcomes are:
- no heads: $P(m = 0) = q^2$
- one head: $P(m = 1) = qp + pq$ (toss 1 is a tail, toss 2 is a head or toss 1 is head, toss 2 is a tail) = $2pq$
 - two outcomes because we don't care which of the tosses is a head
- two heads: $P(m = 2) = p^2$
- $P(0) + P(1) + P(2) = q^2 + 2pq + p^2 = (q + p)^2 = 1$

We want the probability distribution function $P(m, N, p)$ where:
- m = number of success (e.g. number of heads in a coin toss)
- N = number of trials (e.g. number of coin tosses)
- p = probability for a success (e.g. 0.5 for a head)
If we look at the three choices for the coin flip example, each term is of the form:

\[C_m p^m q^{N-m} \quad m = 0, 1, 2, N = 2 \text{ for our example, } q = 1 - p \text{ always!} \]

- The coefficient \(C_m \) takes into account the number of ways an outcome can occur regardless of order.
- For \(m = 0 \) or \(2 \) there is only one way for the outcome (both tosses give heads or tails): \(C_0 = C_2 = 1 \)
- For \(m = 1 \) (one head, two tosses) there are two ways that this can occur: \(C_1 = 2 \).

- Binomial coefficients: number of ways of taking \(N \) things \(m \) at time

\[C_{N,m} = \binom{N}{m} = \frac{N!}{m!(N \Box m)!} \]

- \(0! = 1! = 1, 2! = 1 \cdot 2 = 2, 3! = 1 \cdot 2 \cdot 3 = 6, m! = 1 \cdot 2 \cdot 3 \ldots m \)

- Order of things is not important
 - e.g. 2 tosses, one head case (\(m = 1 \))
 - we don't care if toss 1 produced the head or if toss 2 produced the head

- Unordered groups such as our example are called combinations

- Ordered arrangements are called permutations

For \(N \) distinguishable objects, if we want to group them \(m \) at a time, the number of permutations:

\[P_{N,m} = \frac{N!}{(N \Box m)!} \]

- example: If we tossed a coin twice (\(N = 2 \)), there are two ways for getting one head (\(m = 1 \))

- example: Suppose we have 3 balls, one white, one red, and one blue.
 - Number of possible pairs we could have, keeping track of order is 6 (rw, wr, rb, br, wb, bw):
 \[P_{3,2} = \frac{3!}{(3 \Box 2)!} = 6 \]

- If order is not important (rw = wr), then the binomial formula gives
 \[C_{3,2} = \frac{3!}{2!(3 \Box 2)!} = 3 \quad \text{number of two-color combinations} \]
Binomial distribution: the probability of m success out of N trials:

$$P(m, N, p) = C_{N,m} p^m q^{N-m} = \binom{N}{m} p^m q^{N-m} = \frac{N!}{m!(N-m)!} p^m q^{N-m}$$

- p is probability of a success and $q = 1 - p$ is probability of a failure

Consider a game where the player bats 4 times:

- probability of $0/4 = (0.67)^4 = 20\%$
- probability of $1/4 = \frac{4!}{(3!1!)}(0.33)(0.67)^3 = 40\%$
- probability of $2/4 = \frac{4!}{(2!2!)}(0.33)^2(0.67)^2 = 29\%$
- probability of $3/4 = \frac{4!}{(1!3!)}(0.33)^3(0.67)^1 = 10\%$
- probability of $4/4 = \frac{4!}{(0!4!)}(0.33)^4(0.67)^0 = 1\%$
- probability of getting at least one hit $= 1 - P(0) = 0.8$
To show that the binomial distribution is properly normalized, use Binomial Theorem:

\[(a + b)^k = \sum_{l=0}^{k} \binom{k}{l} a^l b^{k-l}\]

\[
\sum_{m=0}^{N} P(m, N, p) = \sum_{m=0}^{N} \binom{N}{m} p^m q^{N-m} = (p + q)^N = 1
\]

The binomial distribution is properly normalized.

Mean of binomial distribution:

\[
\sum_{m=0}^{N} mP(m, N, p) \over \sum_{m=0}^{N} P(m, N, p) = \sum_{m=0}^{N} m \binom{N}{m} p^m q^{N-m}
\]

A cute way of evaluating the above sum is to take the derivative:

\[
\frac{\partial}{\partial p} \sum_{m=0}^{N} \binom{N}{m} p^m q^{N-m} = 0
\]

\[
\sum_{m=0}^{N} m \binom{N}{m} p^m q^{N-m} = \sum_{m=0}^{N} \binom{N}{m} p^m (N-m)(1-p)^{N-m} = 0
\]

\[
p \sum_{m=0}^{N} \binom{N}{m} p^m q^{N-m} = N \sum_{m=0}^{N} \binom{N}{m} p^m (1-p)^{N-m} = N \sum_{m=0}^{N} \binom{N}{m} p^m (1-p)^{N-m}
\]

\[
p \sum_{m=0}^{N} \binom{N}{m} p^m q^{N-m} = N \sum_{m=0}^{N} \binom{N}{m} p^m (1-p)^{N-m} = Np
\]

K.K. Gan

L2: Binomial and Poisson
Variance of binomial distribution (obtained using similar trick):

\[
\sum_{m=0}^{N} \left(\begin{array}{c} m \\ N \\ \end{array} \right)^2 P(m, N, p) \]

\[
= \frac{N!}{m!(N-m)!} P(m, N, p) \]

\[
= Npq \]

Example: Suppose you observed \(m \) special events (success) in a sample of \(N \) events

- measured probability ("efficiency") for a special event to occur:
 \[
 = \frac{m}{N} \]

- error on the probability ("error on the efficiency"):
 \[
 \sigma = \frac{ \sqrt{Npq} }{ \sqrt{Np(1-p)} } = \sqrt{\frac{Npq}{Np(1-p)}} = \sqrt{ \frac{1}{N} } \]

- sample \((N)\) should be as large as possible to reduce uncertainty in the probability measurement

Example: Suppose a baseball player's batting average is 0.33 (1 for 3 on average).

- Consider the case where the player either gets a hit or makes an out (forget about walks here!).
 - probability for a hit: \(p = 0.33 \)
 - probability for "no hit": \(q = 1 - p = 0.67 \)

- On average how many hits does the player get in 100 at bats?
 \[
 \bar{x} = Np = 100 \cdot 0.33 = 33 \text{ hits} \]

- What's the standard deviation for the number of hits in 100 at bats?
 \[
 \sigma = (Npq)^{1/2} = (100 \cdot 0.33 \cdot 0.67)^{1/2} \approx 4.7 \text{ hits} \]

- we expect \(\approx 33 \pm 5 \) hits per 100 at bats
Poisson Probability Distribution

- A widely used discrete probability distribution
- Consider the following conditions:
 - p is very small and approaches 0
 - example: a 100 sided dice instead of a 6 sided dice, $p = 1/100$ instead of $1/6$
 - example: a 1000 sided dice, $p = 1/1000$
 - N is very large and approaches ∞
 - example: throwing 100 or 1000 dice instead of 2 dice
 - product Np is finite
- Example: radioactive decay
 - Suppose we have 25 mg of an element
 - very large number of atoms: $N \approx 10^{20}$
 - Suppose the lifetime of this element $\tau = 10^{12}$ years $\approx 5 \times 10^{19}$ seconds
 - probability of a given nucleus to decay in one second is very small: $p = 1/\tau = 2 \times 10^{-20}$/sec
 - $Np = 2$/sec finite!
 - number of counts in a time interval is a Poisson process
- Poisson distribution can be derived by taking the appropriate limits of the binomial distribution
 \[
P(m, N, p) = \frac{N!}{m!(N - m)!} p^m q^{N-m}
 \]
 \[
 \frac{N!}{(N - m)!} = \frac{N(N - 1) \cdots (N - m + 1)(N - m)!}{(N - m)!} = N^m
 \]
 \[
 q^{N-m} = (1 - p)^N = 1 - p(N - m) + \frac{p^2(N - m)(N - m - 1)}{2!} + \cdots + \frac{(pN)^2}{2!} + \cdots e^{-pN}
 \]

K.K. Gan

L2: Binomial and Poisson
\[P(m, N, p) = \frac{N^m}{m!} p^m e^{-pN} \]

Let \(\Box = Np \)

\[P(m, \Box) = \frac{\Box^m}{m!} e^{-\Box} \]

\[\sum_{m=0}^\infty \frac{\Box^m}{m!} = e^\Box = e^{Np} = 1 \]

- \(m \) is always an integer \(\geq 0 \)
- \(\Box \) does not have to be an integer
- It is easy to show that:
 - \(\Box = Np = \) mean of a Poisson distribution
 - \(\Box^2 = Np = \) variance of a Poisson distribution
 - Radioactivity example with an average of 2 decays/sec:
 - What’s the probability of zero decays in one second?
 \[p(0, 2) = \frac{e^{2} \cdot 0^0}{0!} = \frac{e^{2} \cdot 1}{1} = e^{2} = 0.135 \] 13.5%
 - What’s the probability of more than one decay in one second?
 \[p(> 1, 2) = 1 - p(0, 2) - p(1, 2) = 1 - \frac{e^{2} \cdot 0^0}{0!} - \frac{e^{2} \cdot 2^1}{1!} = 1 - e^{2} \cdot 2e^{2} = 0.594 \] 59.4%
 - Estimate the most probable number of decays/sec?
 \[\frac{\partial}{\partial m} P(m, \Box) \bigg|_{m^*} = 0 \]

K.K. Gan
L2: Binomial and Poisson
To solve this problem its convenient to maximize \(\ln P(m, \Box) \) instead of \(P(m, \Box) \).

\[
\ln P(m, \Box) = \ln \frac{e^{m \ln m} \Box}{m!} = \Box + m \ln \Box \ln m!
\]

In order to handle the factorial when take the derivative we use Stirling's Approximation:

\[
\ln m! \approx m \ln m - m
\]

\[
\frac{\partial}{\partial m} \ln P(m, \Box) = \frac{\partial}{\partial m} (\Box + m \ln \Box \ln m!)
\]

\[
= \ln \Box \ln m \Box m \frac{1}{m} + 1
\]

\[
= 0
\]

\[
m^* = \Box
\]

The most probable value for \(m \) is just the average of the distribution

If you observed \(m \) events in an experiment, the error on \(m \) is

\[
\Box = \sqrt{\Box} = \sqrt{m}
\]

This is only approximate since Stirlings Approximation is only valid for large \(m \).

Strictly speaking \(m \) can only take on integer values while \(\Box \) is not restricted to be an integer.
Comparison of Binomial and Poisson distributions with mean $\mu = 1$

For large N: Binomial distribution looks like a Poisson of the same mean.