Recap: Lecture #2 Constant Acceleration (Don't write this down! This is mostly review from the last lecture.)

(1)
$$v = v_0 + a t$$

(2) $x = x_0 + v_0 t + \frac{1}{2} a t^2$
(3) $v^2 = v_0^2 + 2a (x - x_0)$
 $v_2 = v_1 + a (t_2 - t_1)$
 $v_2 = v_1 + a \Delta t$
(1) $v_2 = v_1 + a (t_2 - t_1)$
(2) $x_2 = x_1 + v_1 (t_2 - t_1) + \frac{1}{2} a (t_2 - t_1)^2$

(3)
$$v_2^2 = v_1^2 + 2a (x_2 - x_1)$$

Example

A car, going 27.8 m/s brakes, coming to a halt in after traveling 50 m. What was its acceleration?

accelei alloli.		
		→ X
	$\mathbf{t} = 0$	t = ?
	$\mathbf{x}_{0} = 0$	x = 50 m
	$v_0 = 27.8 \text{ m/s}$	v = 0 m/s !!!
$v^2 - v_0^2 = 2a$ (x	(-X ₀)	
$a = \frac{1}{2} (v^2 - v_0^2)$	$(x-x_{o}) = -7.7 \text{ m/}$	s^2

Recap: Lecture #3

One of the kinematic, constant acceleration equations we used was:

 $\mathbf{x}_2 = \mathbf{x}_1 + \mathbf{v}_1 (\mathbf{t}_2 - \mathbf{t}_1) + \frac{1}{2} \mathbf{a} (\mathbf{t}_2 - \mathbf{t}_1)^2$

This relates quantities at time t₁ to quantities at time t₂. It also assume an x-axis.

We used a y-axis, however. Also, we needed to relate time t₃ to time t₂. So, we changed notation:

$$y_3 = y_2 + v_2 (t_3 - t_2) + \frac{1}{2} a (t_3 - t_2)^2$$

Message

All of our equations in this class are written in "generic" notation that might not be appropriate for your problem.

Pick a notation that <u>helps</u> you do your job. Then rewrite the equations using it. It doesn't take long and (believe it or not) helps avoid mistakes.