Recap: Lecture \#2
Constant Acceleration
(Don't write this down! This is mostly review from the last lecture.)
(1) $v=v_{0}+a t$
(2) $x=x_{0}+v_{0} t+1 / 2 a t^{2}$
(3) $\mathbf{v}^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
$v_{2}=v_{1}+\mathbf{a}\left(\mathbf{t}_{\mathbf{2}}-\mathrm{t}_{\mathbf{1}}\right)$
$\mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}}+\mathbf{a} \Delta \mathbf{t}$
(1) $v_{2}=v_{1}+a\left(t_{2}-t_{1}\right)$
(2) $\mathbf{x}_{2}=\mathbf{x}_{1}+\mathbf{v}_{1}\left(\mathbf{t}_{2}-t_{1}\right)+1 / 2 a\left(t_{2}-t_{1}\right)^{2}$
(3) $\mathbf{v}_{2}{ }^{2}=\mathrm{v}_{1}{ }^{2}+2 \mathrm{a}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$

Example
A car, going $27.8 \mathrm{~m} / \mathrm{s}$ brakes, coming to a halt in after traveling 50 m . What was its acceleration?

$$
\begin{array}{ll}
\stackrel{\bullet}{\bullet} & \bullet \\
\mathbf{t}=\mathbf{0} & \mathbf{t}=? \\
\mathbf{x}_{0}=\mathbf{0} & \mathbf{x}=\mathbf{5 0} \mathrm{m} \\
\mathbf{v}_{\mathbf{0}}=27.8 \mathrm{~m} / \mathrm{s} & \mathbf{v}=\mathbf{0} \mathrm{m} / \mathrm{s} \quad!!!
\end{array}
$$

$v^{2}-v_{0}^{2}=2 a\left(x-x_{0}\right)$
$a=1 / 2\left(v^{2}-v_{0}^{2}\right) /\left(x-x_{0}\right)=-7.7 \mathrm{~m} / \mathrm{s}^{2}$

Recap: Lecture \#3

Lessons from Rocket problem.
One of the kinematic, constant acceleration equations we used was:

$$
\mathbf{x}_{2}=\mathbf{x}_{1}+\mathbf{v}_{1}\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right)+1 / 2 a\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right)^{2}
$$

This relates quantities at time t_{1} to quantities at time t_{2}. It also assume an \mathbf{x}-axis.

We used a y-axis, however.
Also, we needed to relate time \mathbf{t}_{3} to time \mathbf{t}_{2}.
So, we changed notation:

$$
y_{3}=y_{2}+v_{2}\left(t_{3}-t_{2}\right)+1 / 2 a\left(t_{3}-t_{2}\right)^{2}
$$

Message
All of our equations in this class are written in "generic" notation that might not be appropriate for your problem.

Pick a notation that helps you do your job. Then rewrite the equations using it. It doesn't take long and (believe it or not) helps avoid mistakes.

