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This distribution function dies exponentially as v — 0, just as in three dimensions; as

v — 0, however, it is linear rather than parabolic. Here’s a plot:
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. The most likely velocity vector is zero, just as in three dimensions, because its Boltzmann
factor is the largest (€° = 1). But the most likely speed is nonzero. To find it, set dP/dv = 0:
; dP 2 muv 2 mv2 2
0=22 —mv?/2kT _ (__) —mv?/2kT _ (1 _ —mv?/2kT
= ° W\zr)e =T )

i The solution iS Umax = kT /m, which looks right from the plot.

Problem 6.42. (F and S for a harmonic oscillator.)
(a) The Helmholtz free energy of a single harmonic oscillator is

F, = —kTlnZ; = —kT'In(1 - ¢ Pyt = kTIn{l ~ e "),

so since F is an extensive quantity, the Helmholtz free energy for N oscillators is

F = NkTIn(1 —e™?).
(b) To find the entropy just differentiate with respect to 1"
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Problem 6.43. (Alternative definition of entropy.)

(a) For an isolated system, P(s) = 0 unless s is an accessible state, so we can restrict the

sum to accessible states which gives
| 1,1 _ kinQ
S——kz;ﬁlnﬁ— = 2(1).

m is just 2, so this expression reduces to the fami

The number of terms in the su
one, S = kIn €.
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0 P(s) = In(e#2®)/7) = _gp(s) _1n 7 %(~E(s) +F),

by equation 6.56. Therefore the alternative definition of entropy reduces to

1 e—BE(s) F e—BE(s) E
z O+ = 7 3B 7

=E-Ts.
Problem 6.44. For N indistinguishable, noninteracting molecules that can exchange
places with each other,
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= ~kT[Nanl — NlnN+N] = —NkT[ln % + 1}.
Therefore the chemical potentia] is
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Problem 6.45, The free energy is given by equation 6.90,

F = —NkT{InV—lnN—

Before diﬁ”erentiating with r
$0 —Invg = 3InT plus a te

ln UQ + l] + Eng.

espect to T to get the

entropy, note that Vo =
mperature-independe

nt constant, Therefore th
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The chemical potential is

(h?/2mmkT)%/2,
€ entropy is

6Ent
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where in the second line I’ve used the definition Fiot = ~NkThn z,

int-




Problem 6.53

Problem 6.51. Because the translational kinetic energy does not depend on position, the
integrand is independent of r and therefore the d*r integral simply gives a factor of V,
the volume of the box. The momentum integrals can be evaluated either in rectangular or
spherical coordinates. I'll use rectangular coordinates; then
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and the exponential of —E,,/kT can be factored to give

Zi = _‘_/_ dp /dpy /dp e—p:/kaTe—pz/2kae-fp3/2ka
=3 z z .

But these are just ordinary Gaussian integrals, for which the general formula is

e dp =/~
Jorays

In our case each integral gives V7 - 2mkT, so

3

|4 ‘ |4
Zer = —h—3(21rka)3/ ? = %,
in agreement with equation 6.82.

-
Problem 6.52. As in the nonrelativistic case, the allowed wavelengths (in one dimension)
are A\, = 2L/n, and therefore the allowed momenta are p, = h/\, = hn/2L. Now,
however, the relation between energy and momentum is E = pc, so the allowed energies
are E, = hen/2L. Therefore the single-particle partition function is

Zld - § :e—En/kT - § :e—hcn/QLkT.
n

n

When L is macroscopic the number of terms in the sum that are significant is very large,
so we can convert the sum to an integral to obtain

*  2LkT

B / % gmhenaiwt g _ _2LKT _ponjarer
0 hc

he

0

As expected, the partition function is directly proportional to L and increases with increas-
ing temperature.

Problem 6.53. As shown in Section 5.6, the equilibrium condition for a chemical reaction
is the same as the reaction equation, with the name of each species replaced by its chemical
potential and < replaced by =. Therefore, if the dissociation of hydrogen is at equilibrium,
we must have uy, = 2uy. Treating each species as an ideal gas, the chemical potentials are
given by equation 6.93, almost. This formula assumes that each molecule has energy zero
when it is at rest, whereas the energy of an H,; molecule at rest is actually less than that of
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two H atoms at rest, the difference being the dissociation energy calculated in Problem 1.53,
€q = 449 eV. I'll take: the energy of an H atom at rest to be zero; then the energy of an
H, molecule at rest is —€d» and the chemical potential is shifted accordingly- Thus, the
equilibrium condition for the dissociation reaction is

V Zint H VZintH
—len(_——'"—t'-'z‘> B —2len< Y )
Nu,VQ Ha ‘ NuvQH

Dividing through by —kT and exponentia.ting both sides gives

2
VZ'mt,Hz egd/k'j“ - (Vzint.ﬂ>
Ny, VQ Ha Nuvgu

To simplify this expression, consider first the internal partition functions. For H,, the in-
ternal partition function is & product of rotational and vibrational contributions. There is
no electronic spin degeneracy, and electronic excited states are unimportant at the temper-
atures of interest. There is also a nuclear spin degeneracy of 4, 2 for each spin-1 /2 proton.
Meanwhile, the internal partition function for atomic hydrogen consists of & nuclear spin
degeneracy factor of 2, multiplied by an electronic spin, degeneracy factor of 2. Excited
electronic states again contribute negligibly. When this partition function is squared, we
see that the nuclear degeneracy factor of 4 cancels between the two sides, leaving us with
only the electronic degeneracy factor of 22 = 4. The equilibrium condition is therefore

VZrOY.ZVib efd/kT . 4V2 ’
Nu,vQHa Nivgu

Next, recall that the quantum yolume of & particle is proportional to its mass t0 the -3/2
power. Since the mass of Hz is twice the mass of H, we can write voH, = VQH jpa and
cancel a factor of vgu 10 obtain

VZrot.Zvib ea/ kT \/i V2
€ = == .
N, Njvon

Now let me use the ideal gas 1aW to replace each V/N with kT/P, where P is the partial
pressure of that species:

KT Zeor Dvib _ealKT V2 (KT)? Py V2kT el *T
k1 Lot Zvib gea/t = —55 or M
Py, Pivqn P,  ZrotZvibVQH
Dividing through by the reference pressure P° to make each side dimensionless, W€ finally
obtain the 1aw of mass action written in the conventional way:

Pi JaKT e /"

B = K h Kee—75 7o
PPy, ! e POUQ,HZrothib

To facilitate numerical computations, let me define

_ V2kT V2T ( 2mmukT 84
KO(T) = m = —-—ﬁa"(—-——-—’:é/) v
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At T = 300 K, this expression evaluates to 57,950. Since it is proportional to T%/2 we can
write
Ko(T) = (57,950)t5/2,

Wwhere ¢ = T'/(300 K). To calculate the rotational partition function I'll use equation 6.33,
kT
rot & >— = (1.70)t,
i 5e- = (1.70)

where I've used the value € = 0.0076 eV from Problem 6.30. (This formula really isn’t
Vvery accurate until Z, > 1, but improving on it would be a lot of work and we’ll see that
the exact value of K at temperatures around 300 K isn’t critical anyway.) The vibrational
partition function was computed in Problem 6.20:
1 1
Zup = 1 — e~e/kT — 1 — e-(17.0)/2°

where I've used the value €, = 0.44 eV estimated in Problem 3.26. Finally, let’s write the
exponential factor involving the dissociation energy as

e~<4/kT _ -7/t

Combining all these expressions, we have for the equilibrium constant

= Ko(T)e~<a/¥T  (57,050)¢5/2 . -173.1)1 » oo
= - (1.70)¢ - (1 - e-(T0/8)—1 = (34,090)%/2(1 — ¢ )e .

Zrot vib
Rather than evaluating this whole expression at once, though, I entered the various piecés
of it into a spreadsheet so I could see how each of them depends on temperature. Here are
the results:

T (K K_O Z_rot|Z vib er(-eps_d/kT) K
300 57950| 1.7] 1.00 3.66E-76| 1.2E-71
1000/1.18E+06] 5.7 1.01 2.34E-23| 4.8E-18
3000/1.83E+07] 17.0 1.22 2.86E-08 0.025
6000)1.04E+08] 34.0 1.75 1.69E-04 295

10000]/3.72E+08] 56.7 2.50 5.46E-03] 14300

if the partial pressure of H; is only 10-1° bar, the partial pressure of atomic hydrogen would
be negligible in comparison:

Py =K PPy, =35x 103 bar.

At higher total pressures, the ratio of H/H, would be even less. (This implies that cold
interstellar clouds containing atomic hydrogen are not in thermodynamic equilibrium.) On
the other hand, at the surface of the sun, where 7' &~ 6000 K, an H, partial pressure of
1 bar would imply an atomic hydrogen partial pressure of

Py = VK- })°})H2 = 17 bar,

S0 nearly 90% of the hydrogen would be ionized, and this percentage would be even higher
at lower total pressures.
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