Physics 880.06: Problem Set 4

Note: please turn these problems into the mailbox of the grader, Wissam Al-Saidi, by 12 noon on Monday, May 5. This problem set consists of just a single problem, which is worth 25 points.

1. The BCS equation for the gap function Δ_k at temperature $T = 0$ is

$$\Delta_k = -\frac{1}{2} \sum_{k'} \frac{\Delta_{k'} V_{k,k'}}{\sqrt{\Delta_{k'}^2 + \xi_{k'}^2}},$$

where $\xi_k = \epsilon_k - E_F$, and ϵ_k is the energy of a non-interacting electron of wave vector k.

(a). Show that if $V_{k,k'} = -A_k A_{k'}$, where A_k is a specified function of k, then the above equation is solved by a gap function of the form $\Delta_k = A_k \Delta$, where Δ is independent of k, and find an equation for Δ.

(b). Now suppose specifically that our superconductor is two-dimensional, and that A_k has the form

$$A_k = A_0 \cos(2\phi)$$

if $|\epsilon_k - E_F| < \hbar \omega_c$, and

$$A_k = 0$$

otherwise. Here $\hbar \omega_c$ is a cutoff energy, $\epsilon_k = \hbar^2 k^2/(2m)$, and we have written $k = (k \cos \phi, k \sin \phi)$. Obtain an integral expression which determines Δ in this case, but you need not solve this to obtain Δ explicitly.

(c). The elementary excitations (“Bogoliubons”) described in class are Fermions which have the dispersion relation $E_k = \sqrt{[\Delta A_k]^2 + \xi_k^2}$. Show that these Bogoliubons are gapless - that is, they have vanishing energies at certain specific values of k (NOT at all values of k!). What are those values of k?

(d). Let k_0 be a node point for a Bogoliubon, and let $\delta k = k - k_0$. Show that, if one chooses the coordinate axes of the vector δk suitably, the energies of the Bogoliubons sufficiently near the point k_0 have the approximate form

$$E(\delta k) \sim \sqrt{C_1[\delta k_1]^2 + C_2[\delta k_2]^2}$$
where δk_1 and δk_2 are the components of δk in the new coordinate system, and C_1 and C_2 are positive constants.

(e). What is the density of states of these Bogoliubons at very low energy?

(f). If we neglect the temperature-dependence of the gap variable Δ, what is the functional form of the temperature-dependence of the specific heat at very low temperatures, for a superconductor with this type of energy gap?

Note: This type of gap function is believed to describe some of the cuprate-based high-temperature superconductors.