1. (10 points). Spin-spin correlation function for the Ising model in 1d. Consider the ferromagnetic Ising model in 1D with zero applied magnetic field. The Hamiltonian is

\[H = -J \sum_{n=1}^{N-1} S_n S_{n+1}, \]

where \(S_n \) takes on the values ±1, \(J > 0 \), and we assume FREE boundary conditions, so that \(S_1 \) and \(S_N \) are not attached to any neighbors.

(a) The partition function for this special case of \(B = 0 \) can be easily calculated by defining new variables \(V_n = S_n S_{n+1} \), with \(n \) running from 1 to \(N - 1 \) These \(V_n \)'s also take on the allowed values ±1 and are independent of one another. Hence, the partition function can be written

\[Q_N(T) = 2 \sum_{V_1 = \pm 1} \cdots \sum_{V_{N-1} = \pm 1} \exp(-H/k_BT), \]

where \(H = -J \sum_{n=1}^{N-1} V_n \). The factor of 2 in front of the partition function allows for two possible orientations of the spin \(S_1 \). Since \(H \) is now the sum of independent variables, the partition function can be easily calculated. Use this simple transformation to calculate the partition function for a chain of \(N \) spins.

(b). Calculate the correlation function \(\langle S_p S_q \rangle \), where \(q > p \) but \(|q - p| \ll N \). (\(p \) and \(q \) are site indices.) Hint: write \(S_p S_q = (S_p S_{p+1})(S_{p+1} S_{p+2})\ldots(S_{q-1} S_q) \) and use the change of variables described in (a). Why is it possible to write \(S_p S_q \) in this way?

(c). Show that, for \(k_BT \ll J \), \(\langle S_p S_q \rangle \sim \exp[-|p - q|/\xi(T)] \), where the correlation length \(\xi(T) \sim \exp(2J/k_BT)/2 \).

2. (20 points) Mean-field theory for the XY model: A mean-field theory for the XY model can be obtained by analogy with that of the
Ising model. To find the mean-field properties, consider the XY model Hamiltonian

\[H = -J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) - B \sum_i \cos \theta_i, \]

(2)

where \(B \) is the applied magnetic field, assumed to be in the \(x \) direction. \(i \) and \(j \) are site indices, and the first sum runs overall distinct pairs of nearest neighbor spins. We take the order parameter \(\eta \) to be the magnetization per spin, i.e.

\[\eta = \langle \cos \theta_i \rangle, \]

(3)

where \(\langle ... \rangle \) denotes an average in the canonical ensemble. Note that because the coefficients \(J \) and \(B \) are independent of site, \(\eta \) should be independent of \(i \). The exact expression for \(\eta \) in the canonical ensemble is

\[\eta = \frac{1}{Q_N} \int_0^{2\pi} d\theta_1 \ldots \int_0^{2\pi} d\theta_N \exp(-H/k_BT) \cos \theta_i, \]

(4)

where

\[Q_N = \int_0^{2\pi} d\theta_1 \ldots \int_0^{2\pi} d\theta_N \exp(-H/k_BT). \]

(5)

To obtain the critical temperature in the mean-field approximation, we assume that the \(i^{th} \) spin is moving in a field equal to the applied field plus the mean-field of its \(z \) nearest neighbors. The interaction energy between the \(i^{th} \) and \(j^{th} \) spin is

\[-J \cos(\theta_i - \theta_j) = -J [\cos \theta_i \cos \theta_j + \sin \theta_i \sin \theta_j]. \]

(6)

We approximate the right-hand side of this equation as

\[-J [\cos \theta_i \langle \cos \theta_j \rangle + \sin \theta_i \langle \sin \theta_j \rangle] = -J \eta \cos \theta_j, \]

(7)

where the last equality comes from the fact that \(\langle \sin \theta_j \rangle = 0 \). Thus, in the mean-field approximation, \(\eta \) is given by the self-consistent equation

\[\eta = \frac{\int_0^{2\pi} \exp(-H_{MF}/k_BT) \cos \theta_i d\theta_i}{\int_0^{2\pi} \exp(-H_{MF}/k_BT) d\theta_i}, \]

(8)
where

\[H_{MF} = -(B + zJ\eta) \cos \theta_i. \] \hfill (9)

(a). Near the transition temperature \(T_c \), \(\eta \) is expected to be small. Expand both the numerator and the denominator in powers of \(\eta \), and find all terms through \(\eta^3 \) in the numerator and through \(\eta^2 \) in the denominator. Thus, obtain all terms in the ratio through \(\eta^3 \).

(b). Solve the resulting cubic equation for \(B = 0 \), and show that there exists a \(T_c \) such that this equation has real, non-zero solutions for \(\eta \) for \(T < T_c \) but the only real solution for \(T > T_c \) is \(\eta = 0 \). Find \(T_c \) in terms of \(z \) and \(J \). Show that for \(T < T_c \), \(|\eta| \propto (T - T_c)^\beta \), and find the exponent \(\beta \).

(c). For \(T > T_c \) and \(B \neq 0 \), find \(\eta \) to first order in \(B \). Show that \((\partial \eta/\partial B)_{B=0} \propto (T - T_c)^{-\gamma} \) and find \(\gamma \).

Note that this solution fails badly in \(d = 1 \) and \(d = 2 \) because, as shown in class, the spontaneous magnetization in both cases vanishes for \(T > 0 \).

3. (20 pts.) **Properties of Spin Operators**: In this problem, you will prove some of the properties of spin operators stated in class, starting with the commutation relations \([S_x, S_y] = iS_z, S_y, S_z] = iS_x\), and \([S_z, S_x] = iS_y\). (Note: in this convention, the spin angular momentum operator is \(\hbar \) multiplied by the spin operator.) Define the raising and lowering operators \(S_+ = S_x + iS_y \) and \(S_- = S_x - iS_y \), and the squared total spin angular momentum operator \(S^2 = S_x^2 + S_y^2 + S_z^2 \). Prove the following:

(a). \([S_z, S^2] = 0 \).

(b). \([S_z, S_\pm] = \pm S_\pm \).

(c). \([S_+, S_-] = 2S_z \).

(d). \(S_-S_+ = S^2 - S_z^2 - S_z \) and \(S_+S_- = S^2 - S_z^2 + S_z \).

(e). Since \([S_z, S^2] = 0 \), we can find a complete set of states which are simultaneously eigenstate of \(S^2 \) and \(S_z \). Denote these eigenstates as \(|Sm\rangle \). Let the eigenvalue of \(S^2 \) be denoted \(S(S + 1) \) and that of \(S_z \) be denoted \(m \). In this part, you will show that \(S \) is an integer or a half-integer, and that \(-m \leq S \leq +m\).
(i). Since S^2 is the sum of three positive operators, its eigenvalue must be at least 0. Therefore, $S(S + 1) \geq 0$. Use the same argument to show that the $\langle Sm|S_+S_-|Sm\rangle \geq 0$, and therefore that $S(S+1) - m^2 - m \geq 0$. Show that this is equivalent to $(S + 1/2)^2 \geq (m - 1/2)^2$.

(ii) Use a similar argument to show that $S_+^{1/2} \geq (m + 1/2)^2$.

(iii). Show that (i) and (ii) imply that $-S \leq m \leq +S$.

(iv). Use the result of part (a) to show that $S_+^{1/2} \geq (m + 1/2)^2$.

(v). Hence, show from (c) above that $\langle Sm|S_+S_-|Sm\rangle = |c|^2 \langle S, m - 1|S, m - 1\rangle = [S(S + 1) - m(m - 1)]$. Thus, if we choose the phase of $|S, m-1\rangle$ so that c is a real, positive constant, then you have shown that $S_-|Sm\rangle = \sqrt{S(S + 1) - m(m - 1)}|S, m - 1\rangle$. By a similar argument, it can be shown that $S_+|Sm\rangle = \sqrt{S(S + 1) - m(m - 1)}|S, m + 1\rangle$.

Hence, it appears that if m is an eigenvalue of S_z, then so are $m+1$, $m+2$, etc. But you have already shown that $-S \leq m \leq +S$. Therefore, for some m of that does not exceed S, the coefficient $\sqrt{S(S + 1) - m(m + 1)}$ must vanish, in order for the series of eigenstates to terminate with $m \leq S$. This vanishing clearly occurs for $m = S$. Thus, we must have $m = S$, $S - 1$, $S - 2$, etc. A similar argument shows that the lowest m value satisfies $\sqrt{S(S + 1) - m(m - 1)} = 0$ or $m = -S$. Thus m must also satisfy $m = -S$, $-S + 1$, $-S + 2$, etc. Both of these conditions can be satisfied only if S is an integer or a half-integer, in which case $m = -S$, $-S + 1$, $-S + 2$, etc. $S - 1$, S, as was to be proved.

Note: the last two paragraphs are purely explanatory, and do not ask you to do anything.