Isotopic spin - G parity

Isotopic spin was introduced in 1930's by Heisenberg to describe the approximate charge independence of the strong interactions.

\[\gamma_N(x) = \begin{pmatrix} \gamma_p(x) \\ \gamma_n(x) \end{pmatrix} \]

Proton field
Neutron field

Phenomenological description valid for length scales \(\geq 1 \text{ fm} \).

U2 symmetry

Define transformation

\[\gamma \rightarrow \gamma' = U \gamma \]

where \(U \) is a complex 2x2 matrix.
Note: if define \(\psi_1 = \psi_p, \psi_2 = \psi_n \) components of \(\psi_N \), they satisfy the canonical anti-commutation relations

\[
\{ \psi_i(x, t), \psi_j(x', t') \} = \delta_{ij} \delta^3(x-x')
\]

In order for the transformation to preserve the commutation relations we have

\[
\{ \psi'_i(x, t), \psi'_j(x', t') \} = \delta_{ij} \delta^3(x-x')
\]

\[
= u_{ik} u^+_{lj} \left\{ \psi_k(x, t), \psi_l(x', t') \right\} \delta_{ek} \delta^3(x-x')
\]

\[
\Rightarrow (uu^+)^{ij} = \delta_{ij} \text{ or } |uu^+| = 1.
\]

\[
\Rightarrow u \text{ is unitary } 2 \times 2 \text{ matrix.}
\]
The set of all complex 2×2 unitary matrices form a group under matrix multiplication. This group is called U_2.

Let's define the transformation in terms of operators in Fock space. There exists a unitary operator U that acts on Fock space such that (let $\Psi = \Psi_\infty$)

$$U \Psi(x) U^+ \equiv u \Psi(x).$$

(We shall construct it later.)

Given

$$\Psi^\rho(x) = \int \frac{d^3k}{(2\pi)^3} \sum_s \left(b^\rho(k^-s) u(k^-,s) e^{-ik \cdot x} + d^\rho_\uparrow(k^-,s) v(k^-,s) e^{ik \cdot x} \right),$$

$$\Psi^\Lambda(x) = \begin{pmatrix} b_\Lambda(k^-,s) \\ d_\Lambda^\dagger(k^-,s) \end{pmatrix},$$

$$\left(b_\Lambda(k^-,s) \\ d_\Lambda^\dagger(k^-,s) \right).$$
\[\Rightarrow \mathbf{U} \begin{pmatrix} b_p(\mathbf{K}, s) \\ b_n(\mathbf{K}, s) \end{pmatrix} \mathbf{U}^+ = \mathbf{u} \begin{pmatrix} b_p(\mathbf{K}, s) \\ b_n(\mathbf{K}, s) \end{pmatrix} \]

\[\Rightarrow \mathbf{U} \begin{pmatrix} d^+_p(\mathbf{K}, s) \\ d^+_n(\mathbf{K}, s) \end{pmatrix} \mathbf{U}^+ = \mathbf{u} \begin{pmatrix} d^+_p(\mathbf{K}, s) \\ d^+_n(\mathbf{K}, s) \end{pmatrix} \]

Note \(\mathbf{u} \in \mathbf{U}_2 \) has 4 arbitrary continuous parameters, since \(\mathbf{u} \) is a complex 2x2 matrix \(\Rightarrow \) 8 real parameters but \(\mathbf{u}^+ \mathbf{u} = 1 \Rightarrow 4 \) constraints and therefore \(\mathbf{u} \) is defined in terms of 4 parameters.

Define \(\det \mathbf{u} = e^{-2i\theta} \), then

\[\mathbf{u} = e^{-i\theta} \mathbf{U}_1 \] such that

\[\det \mathbf{U}_1 = 1. \mathbf{U}_1 \text{ is an element of the group } SU_2 \text{ where} \]
\[u = e^{-i\theta} \left(\begin{array}{cc}
\alpha^* & -\beta^* \\
\beta^* & \alpha^*
\end{array} \right) \quad 1\alpha^2 + 1\beta^2 = 1 \] (63)

\[SU_2 \equiv \{ U | 2 \times 2 \text{ unitary matrices} \}
\]

\[\text{det} U = 1 \}

\[U_1 \text{ are given in terms of 3 arbitrary parameters.} \]

In general \(U_1 = e^{i \frac{2}{\hbar} \Theta} \)

\(\Theta \) are Pauli matrices,

\(\Theta_i \); \((i=1, 2, 3)\) are 3 real parameters.

\[U_2 = SU_2 \otimes U_1 \]

Consider \(\Theta = 0 \Rightarrow U = e^{-i\theta} \)

\[U(\theta, \Theta = 0) \left(\begin{array}{c}
d^+_p \\
d^+_n
\end{array} \right) U^+(\theta) = e^{-i\theta} \left(\begin{array}{c}
d^+_p \\
d^+_n
\end{array} \right) \]

Let \(U(\theta) = e^{i\theta B} \) and \(B = B^* \)

is an operator in Fock space.
Calculate

\[-i \frac{d}{d\theta} \left[U(\theta) \left(\frac{d^+_p}{d^+_n} \right) U^+(\theta) \right]_{\theta=0} \]

\[= - \left(\begin{array}{c} d^+_p \\ d^+_n \end{array} \right) \]

\[\Rightarrow \left[B, \left(\begin{array}{c} d^+_p \\ d^+_n \end{array} \right) \right] = - \left(\begin{array}{c} d^+_p \\ d^+_n \end{array} \right) \]

Similarly

\[\left[B, \left(\begin{array}{c} b^+_p \\ b^+_n \end{array} \right) \right] = - \left(\begin{array}{c} b^+_p \\ b^+_n \end{array} \right) \]

or

\[\left[B, \left(\begin{array}{c} b^+_p \\ b^+_n \end{array} \right) \right] = \left(\begin{array}{c} b^+_p \\ b^+_n \end{array} \right) \]

We now know how B acts on proton and neutron states, since

\[|p> = b^+_p |0> \quad , \quad |n> = b^+_n |0> \]

\[\Rightarrow B|p> = |p> \quad , \quad B|n> = |n> \]
and \(|\bar{p}\rangle = d^+_p |0\rangle \), \(|\bar{n}\rangle = d^+_n |0\rangle \),

\[\Rightarrow B |\bar{p}\rangle = -|\bar{p}\rangle, \quad B |\bar{n}\rangle = -|\bar{n}\rangle \]

and \(B |0\rangle = 0 \) was assumed.

Thus, \(B \) is the generator of Baryon number.

Now consider the \(SU_2 \) transformations.

\[SU_2 \bigg/ U_1(\bar{\delta}) \psi_N(x) U_1^+(\bar{\delta}) = U_1 \psi_N(x) \]

\[U(\theta, \bar{\delta}) = e^{i B \theta} U_1(\bar{\delta}) \]

and \(\det U_1 = 1 \).

These take protons into neutrons (this is isospin). Heisenberg assumed that the strong interactions (i.e., nuclear forces) were isospin invariant.
i.e. \[U_I \ H_{st} \ U_I^+ = H_{st} \]

Note, we have discussed the action of \(U \) on free (or interaction picture) states. However, if we write \(H_{st} = H_0 + H_I \) and \(U_I \ H_0 \ U_I^+ = H_0 \), \(U_I \ H_I \ U_I^+ = H_I \) then it is easy to see that the Heisenberg states transform in the same way as the interaction picture states. If the interaction picture state is given by

\[|\psi_t\rangle \equiv b_p^+ |10\rangle \]

then the fully interacting state is given by

\[|\psi\rangle = e^{i H_{st} t} e^{-i H_0 t} |\psi_t\rangle \]
\[U_I |p\rangle = U_I e^{i H_s t} e^{-i H_0 t} |p\rangle_0 \]

\[\overset{t \to -\infty}{=} e^{i H_s t} e^{-i H_0 t} U_I |p\rangle_0 \]

since \[[U_I, H_s] = \sum U_I, H_0 = 0 \]

and we evaluated \(U_I |p\rangle_0 \).

Also \[[U_I, S] = 0 \]

\(\uparrow \) \(S \) operator

For homework you found that \(U_I(\vec{\theta}) = e^{-i \vec{I} \cdot \vec{\theta}} \)

with \[[\vec{I}_i, \psi_N(x)] = -\frac{2i}{\hbar} \psi_N(x) \]

satisfies

\[U_I(\vec{\theta}) \psi_N(x) U_I^{\dagger}(\vec{\theta}) \equiv U_I \psi_N(x) \]

with \(U_I \equiv e^{i \frac{\vec{I} \cdot \vec{\theta}}{\hbar}} \).
I_i are the generators of isospin rotations, satisfying the Lie algebra

$$[I_i, I_j] = i \epsilon_{ijk} I_k.$$

$$I_i = \int d^3x \, \psi^+_N(x) \frac{\tau_i}{2} \psi_N(x)$$

and

$$j_i^\mu(x) = \bar{\psi}_N(x) y^\mu \frac{\tau_i}{2} \psi_N(x)$$

satisfies $\Theta_{\mu j_i^\mu}(x) = 0$ if isospin is conserved.

In terms of creation and annihilation operators

$$I_i = \int \frac{d^3k}{(2\pi)^3} \frac{\tau_i}{2} \sum_{s} \left(b^+_k(R,s) \frac{\tau_i}{2} \epsilon_m b_k(R,s) - \bar{d}^+_k(R,s) \frac{\tau_i}{2} \epsilon_m d_k(R,s) \right)$$

$$+ \left(\frac{\tau_i}{2} \right)_{ml}$$
Also (see pg. 62)

\[U_I(\bar{\Theta}) \left(\begin{array}{c} 1p \\ 1n \end{array} \right) = U_I(\Theta) \left(\begin{array}{c} 1p \\ 1n \end{array} \right) \]

\[U_I(\bar{\Theta}) \left(\begin{array}{c} 1p \\ 1n \end{array} \right) = \left(\begin{array}{c} 1p \\ 1n \end{array} \right) u_I^+(\bar{\Theta}) \]

\[\text{Note } [U_I(\bar{\Theta}), H_{st}] = 0 \]

\[\Rightarrow [I_i, H_{st}] = 0 \]

i.e. Differentiate \(\Theta_i = \hat{\Theta}_i \alpha \)

in \(U_I(\bar{\Theta}) H_{st} U_I^+(\bar{\Theta}) = H_{st} \)

by \(\alpha \) and let \(\alpha \to 0 \).

with \(\hat{\Theta}_i \) arbitrary.