Program to demonstrate that the order of summation of even positive numbers matters

Programmer: Dick Furnstahl furnstahl.1@osu.edu

Revision history:
01/02/11 new version from demol.cpp

Notes:
* An example to try to understand summing upward vs. summing downward. Add a small number eps (slightly below single-precision machine precision) many times to 1. It makes a big difference (in single precision) whether you do 1 + eps + eps + ... or eps + eps + ... + 1.

* First pass: no subroutine
* Use single precision AND double precision at the same time
* Here is the output with eps=5e−7 added 10^7 times:

1+eps+eps+... eps+eps+...+1
single precision: 1.0000000000 1.5323836803
double precision: 1.4999999992 1.4999999999

To do:

#include files
#include <iostream> // note that .h is omitted
#include <iomanip> // note that .h is omitted
using namespace std; // we need this when .h is omitted

//***
// include files
#include <iostream> // note that .h is omitted
#include <iomanip> // note that .h is omitted
using namespace std; // we need this when .h is omitted

//** begin main **

int main ()
{
 int num_eps = 100000000; // number of times to add eps to 1
 float eps_sp = 5.e-7; // single precision small increment
 double eps_dp = 5.e-7; // double precision small increment

 float sum_first_sp = 1.; // adding 1 first (single precision)
 float sum_last_sp = 0.; // adding 1 at the end (single precision)
 double sum_first_dp = 1.; // adding 1 first (double precision)
 double sum_last_dp = 0.; // adding 1 at the end (double precision)

 cout << endl << "Adding small numbers many times to a big number:"
 cout << endl;

 // add small numbers (in single or double precision) num_eps times
 for (int i = 0; i < num_eps; i++)
 {
 sum_first_sp += eps_sp;
 sum_last_sp += eps_sp;
 sum_first_dp += eps_dp;
 sum_last_dp += eps_dp;
 }

 sum_last_sp += 1.; // add 1 at the end
 sum_last_dp += 1.; // add 1 at the end

 cout << endl << "1+eps+eps+... eps+eps+...+1
 single precision: " << fixed << setprecision (15) << setw (20) << sum_first_sp << endl;
 cout << "double precision: " << fixed << setprecision (10) << setw (20) << sum_first_dp << " \n";
 return (0);
}