Problem 1 (20 points) A mass M can slide without friction on a horizontal surface in the x direction. A mass m is suspended from M by a massless rod of length L, and can swing freely in the vertical plane.

(a) Find the Lagrangian. (10 points)

(b) Is there a cyclic coordinate? If so find the corresponding conserved momentum. (5 points)

(c) Find the Lagrange equations of motion (you do not have to solve these equations). (5 points)
Problem 2 (20 points) Three point masses, each of mass \(m \), can slide on a circle of radius \(R \). They are connected by springs of spring constant \(k \). When the masses are evenly spaced around the circles, the springs are at their relaxed lengths.

![Diagram of three masses connected by springs on a circle](image)

(a) Use the angular positions \(\theta_1, \theta_2, \theta_3 \) as variables. Find the frequencies of small oscillations and the normal modes. (15 points)

(b) Suppose at \(t = 0 \) the displacements were (\(\epsilon \) is a small number)

\[
\theta_1 = \epsilon, \quad \theta_2 = 0, \quad \theta_3 = 0
\]

(1)

and \(\dot{\theta}_1 = 0, \dot{\theta}_2 = 0, \dot{\theta}_3 = 0 \). Find the evolution of the oscillations for later times. (5 points)