Physics 5300, Theoretical Mechanics Spring 2015

Assignment 5 solutions

The problems numbers below are from Classical Mechanics, John R. Taylor, University Science Books (2005).

Problem 1 Taylor 10.10

Solution: (a)

\[I = \frac{M}{L} \int_{x=0}^{L} dx x^2 = \frac{ML^3}{L} \cdot \frac{3}{3} = \frac{ML^2}{3} \quad (1) \]

(b)

\[I = 2 \frac{M}{L} \int_{x=0}^{\frac{L}{2}} x^2 dx = \frac{2ML^3}{L24} = \frac{ML^2}{12} \quad (2) \]

Problem 2 Taylor 10.12

Solution: We first compute \(I \) for rotation about an axis parallel to the \(z \) axis, passing through one corner. We will then use the parallel axis theorem to get \(I \) around an axis passing through the centroid.

Let the length of the prism be \(L \). The area of each side is \(2a \). The height is

\[h = \sqrt{4a^2 - a^2} = \sqrt{3}a \quad (3) \]

The area is

\[A = \frac{1}{2}(2a)\sqrt{3}a = \sqrt{3}a^2 \quad (4) \]

The volume is then

\[V = \sqrt{3}a^2L \quad (5) \]

and the density is

\[\rho = \frac{M}{V} = \frac{M}{\sqrt{3}a^2L} \quad (6) \]

Let the \(y \) axis be along the perpendicular of the triangle, with \(y = 0 \) being the vertex of the triangle. The range of \(y \) is

\[0 \leq y \leq \sqrt{3}a \quad (7) \]
At any given value of \(y \), the range of \(x \) is
\[
-\frac{1}{\sqrt{3}} y \leq x \leq \frac{1}{\sqrt{3}} y
\]
(8)

The distance squared from the \(z \) axis is \(x^2 + y^2 \). Thus
\[
I = 2\rho \int_{z=0}^{L} dz \int_{y=0}^{\sqrt{3}a} dy \int_{x=0}^{\frac{1}{\sqrt{3}} y} dx (x^2 + y^2)
\]
(9)

The first part is
\[
I_1 = 2\rho \int_{z=0}^{L} dz \int_{y=0}^{\sqrt{3}a} dy \int_{x=0}^{\frac{1}{\sqrt{3}} y} dx \cdot x^2 = 2\rho L \int_{y=0}^{\sqrt{3}a} dy \frac{x^3}{3} \bigg|_{x=0}^{\frac{1}{\sqrt{3}} y}
\]
(10)
\[
= 2\rho L \int_{y=0}^{\sqrt{3}a} dy \frac{y^3}{9\sqrt{3}} = 2\rho L \frac{1}{9\sqrt{3}} \frac{y^4}{4} \bigg|_{y=0}^{\sqrt{3}a} = 2\rho L \frac{1}{9\sqrt{3}} \frac{9a^4}{4} = \frac{1}{2\sqrt{3}} \rho La^4 = \frac{1}{2\sqrt{3}} \frac{M}{3a^2L} La^4 = \frac{1}{6} Ma^2
\]
(11)

The second part is
\[
I_2 = 2\rho \int_{z=0}^{L} dz \int_{y=0}^{\sqrt{3}a} dy y^2 \int_{x=0}^{\frac{1}{\sqrt{3}} y} dx = 2\rho \int_{z=0}^{L} dz \int_{y=0}^{\sqrt{3}a} dy y^2 x \bigg|_{x=0}^{\frac{1}{\sqrt{3}} y}
\]
(12)
\[
= 2\rho \int_{z=0}^{L} dz \int_{y=0}^{\sqrt{3}a} dy y^3 \frac{1}{\sqrt{3}} = 2\rho L y^4 \frac{1}{\sqrt{3}} \bigg|_{y=0}^{\sqrt{3}a} = 2\rho L \frac{9a^4}{4} = \frac{3\sqrt{3}}{2} \rho La^4 = \frac{3\sqrt{3}}{2} \frac{M}{\sqrt{3}a^2L} La^4 = \frac{3}{2} Ma^2
\]
(13)

The centroid is at a distance
\[
2 \sqrt{3} a = \frac{2}{\sqrt{3}} a
\]
(14)

from the vertex. Thus we need to subtract an amount
\[
M \frac{4}{3} a^2
\]
(15)

from the sum of the above two terms. This gives
\[
I = \frac{3}{2} Ma^2 + \frac{1}{6} Ma^2 - \frac{4}{3} Ma^2 = \frac{1}{3} Ma^2
\]
(16)

The products of inertia will vanish by symmetry, if we compute them around the midpoints of the prism.

Problem 3 Taylor 10.15
Solution: (a) Let the axis of rotation be the z axis, and the cube extend from 0 to a on each axis. The density is

$$\rho = \frac{M}{a^3}$$

(17)

We get

$$I = \rho \int_{z=0}^{a} dz \int_{y=0}^{a} dy \int_{x=0}^{a} dx (x^2 + y^2)$$

(18)

We have

$$\rho \int_{z=0}^{a} dz \int_{y=0}^{a} dy \int_{x=0}^{a} dx x^2 = \rho \int_{z=0}^{a} dz \int_{y=0}^{a} dy \frac{a^3}{3} = \rho \frac{a^5}{3} = \frac{Ma^2}{3}$$

(19)

The other integral gives the same result, so we get

$$I = \frac{2Ma^2}{3}$$

(20)

(b) The height of the center of mass is $\frac{a}{\sqrt{2}}$ above the table. At the end, the center of mass is at a height $\frac{a}{2}$. Thus the PE lost is

$$Mga\left(\frac{1}{\sqrt{2}} - \frac{1}{2}\right) = Mga\frac{\sqrt{2} - 1}{2}$$

(21)

The KE gained is

$$\frac{1}{2}I\omega^2$$

(22)

Thus we get

$$\frac{1}{2} \frac{2Ma^2}{3} \omega^2 = Mga\frac{\sqrt{2} - 1}{2}$$

(23)

$$\omega^2 = \frac{g}{a^2} \frac{3}{2} (\sqrt{2} - 1)$$

(24)

Problem 4 Taylor 10.21

Solution: If we have a diagonal term like $i = x, j = x$ then we get

$$I_{xx} = \int \rho (x^2 + y^2 + z^2 - x^2) = \int \rho (y^2 + z^2)$$

(25)

which is correct. If we have an off diagonal term, then we get

$$I_{xy} = \int \rho (-xy)$$

(26)
which is correct as well.

Problem 5 Taylor 10.35

Solution: We have

\[I_{xx} = \sum_i m_i (y^2 + z^2) = 2m[a^2 + a^2] + 3m[a^2 + a^2] = 10ma^2 \] \hspace{1cm} (27)

\[I_{yy} = \sum_i m_i (x^2 + z^2) = m[a^2] + 2m[a^2] + 3m[a^2] = 6ma^2 \] \hspace{1cm} (28)

\[I_{zz} = \sum_i m_i (x^2 + y^2) = m[a^2] + 2m[a^2] + 3m[a^2] = 6ma^2 \] \hspace{1cm} (29)

\[I_{xy} = -\sum_i m_i xy = m[0] = 0 \] \hspace{1cm} (30)

\[I_{yz} = -\sum_i m_i yz = -m[0] - 2m[a^2] - 3m[-a^2] = ma^2 \] \hspace{1cm} (31)

\[I_{xz} = -\sum_i m_i xz = -m[0] - 2m[0] = 0 \] \hspace{1cm} (32)

Thus

\[I = ma^2 \begin{pmatrix} 10 & 0 & 0 \\ 0 & 6 & 1 \\ 0 & 1 & 6 \end{pmatrix} \] \hspace{1cm} (33)

The eigenvalues are found from the equation (keeping apart a factor of \(ma^2 \))

\[\text{Det} \begin{pmatrix} 10 - \lambda & 0 & 0 \\ 0 & 6 - \lambda & 1 \\ 0 & 1 & 6 - \lambda \end{pmatrix} = 0 \] \hspace{1cm} (34)

\[(10 - \lambda)[(6 - \lambda)^2 - 1] = 0 \] \hspace{1cm} (35)

One solution is

\[\lambda = 10 \] \hspace{1cm} (36)

The other solutions are given by

\[(6 - \lambda)^2 = 1, \hspace{0.5cm} 6 - \lambda = \pm 1, \hspace{0.5cm} \lambda = 5, \hspace{0.5cm} \lambda = 7 \] \hspace{1cm} (37)

Thus the moments of inertia are

\[I_1 = 10ma^2, \hspace{0.5cm} I_2 = 5ma^2, \hspace{0.5cm} I_3 = 7ma^2 \] \hspace{1cm} (38)
The eigenvectors are given by
\[
\begin{pmatrix}
10 & 0 & 0 \\
0 & 6 & 1 \\
0 & 1 & 6 \\
\end{pmatrix}
\begin{pmatrix}
V_x \\
V_y \\
V_z \\
\end{pmatrix}
= 10
\begin{pmatrix}
V_x \\
V_y \\
V_z \\
\end{pmatrix}
\] (39)

Let \(V_z = 1 \). Then we get
\[
6V_y + V_z = 10V_y, \quad -4V_y + V_z = 0, \quad V_y = \frac{V_z}{4}
\] (40)

We also get
\[
V_y + 6V_z = 10V_z, \quad V_y = -4V_z
\] (41)

Thus we get the eigenvector
\[
(1, 0, 0)
\] (42)

For \(\lambda = 5 \) we get
\[
\begin{pmatrix}
10 & 0 & 0 \\
0 & 6 & 1 \\
0 & 1 & 6 \\
\end{pmatrix}
\begin{pmatrix}
V_x \\
V_y \\
V_z \\
\end{pmatrix}
= 5
\begin{pmatrix}
V_x \\
V_y \\
V_z \\
\end{pmatrix}
\] (43)

Thus
\[
10V_x = 5V_x, \quad V_x = 0
\] (44)
\[
6V_y + V_z = 5V_y, \quad V_y = -V_z
\] (45)
\[
V_y + 6V_z = 5V_z, \quad V_y = -V_z
\] (46)

Thus we can take the eigenvector
\[
(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})
\] (47)

For \(\lambda = 7 \) we get
\[
\begin{pmatrix}
10 & 0 & 0 \\
0 & 6 & 1 \\
0 & 1 & 6 \\
\end{pmatrix}
\begin{pmatrix}
V_x \\
V_y \\
V_z \\
\end{pmatrix}
= 7
\begin{pmatrix}
V_x \\
V_y \\
V_z \\
\end{pmatrix}
\] (48)

Thus
\[
10V_x = 7V_x, \quad V_x = 0
\] (49)
\[
6V_y + V_z = 7V_y, \quad V_y = V_z
\] (50)
\[
V_y + 6V_z = 7V_z, \quad V_y = V_z
\] (51)

Thus we can take the eigenvector
\[
(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})
\] (52)
Problem 6 Taylor 10.40

Solution: (a) We have
\[I_1 \dot{\omega}_1 - (I_2 - I_3) \omega_2 \omega_3 = 0 \] (53)
Multiplying by \(L_1 = I_1 \omega_1 \) gives
\[L_1 I_1 \dot{\omega}_1 - I_1 (I_2 - I_3) \omega_2 \omega_3 \omega_1 = 0 \] (54)
We have two similar equations for the other components. Adding them, the second terms in these equations are seen to add to zero. The first terms add to
\[L_1 (I_1 \dot{\omega}_1) + L_2 (I_2 \dot{\omega}_2) + L_3 (I_3 \dot{\omega}_3) = 0 \] (55)
This is
\[I_1 \dot{I}_1 + I_2 \dot{I}_2 + I_3 \dot{I}_3 = 0 \] (56)
\[\frac{d}{dt} \left[\frac{1}{2} (I_1^2 \dot{I}_2 + I_3^2 \dot{I}_3) \right] = 0 \] (57)
which is
\[\frac{d}{dt} L^2 = 0 \] (58)
so the magnitude of the angular momentum remains unchanged.

(b) We have
\[I_1 \dot{\omega}_1 - (I_2 - I_3) \omega_2 \omega_3 = 0 \] (59)
Multiplying by \(\omega_1 \) gives
\[I_1 \dot{\omega}_1 \omega_1 - (I_2 - I_3) \omega_2 \omega_3 \omega_1 = 0 \] (60)
When we add the three equations, the second terms cancel. The first terms give
\[I_1 \frac{1}{2} \frac{d}{dt} (\omega_1^2) + I_2 \frac{1}{2} \frac{d}{dt} (\omega_2^2) + I_3 \frac{1}{2} \frac{d}{dt} (\omega_3^2) = \frac{d}{dt} T = 0 \] (61)