Physics 261: Math Session

- No notebook today — just follow the marching orders here.
- Start by reminding yourself how Solve[] works, and explain to your neighbor what a "substitution rule" is. Maybe solve a quadratic eqn.
- Exercise your mastery of these concepts by working through the set of eqns on the homework's worksheet:
 - First define the 4 eqns (e.g., eqnA = \(T - \mu mg = m_1 x_1 \)).
 - Then Solve[] atomically for \(x_1, x_2, y_3, T_3 \).
 - Then follow the steps on the worksheet, i.e., Solve[] eqnA for \(x_1 \), and plug back into eqnD to obtain eqnDF (aka d').
 - Similarly use eqnB & eqnC to eliminate \(x_2, y_3 \) to obtain equation \(d'' \).
 - Solve for \(T \). Useful incantations: Solve[eqn, x][EIJ]
- Print out these cells and hand in with the homework. If you need to AddAPrinter, ask.

- Use Solve to find \(f \) and \(\theta \) in the following situation.

 \[
 \begin{align*}
 \text{Forces: } & \quad T \quad \Rightarrow \quad x: \quad ma = \? \\
 & \quad f \quad \Rightarrow \quad y: \quad m_0 = \?
 \end{align*}
 \]

 - Complete the equations at right and Solve for \(f \& \theta \).
 - Then given we are at the extreme positive acceleration where \(f = \mu N \),

 Solve for the maximal acceleration before the block slips.
 - Likewise suppose we seek the minimal acceleration (when \(f \) will pull up the ramp);

 make the eqns appropriately and Solve again.

 - No requirement to print this out, but you may choose to if you like.

- Morin asks for \(x(t) \) given that \(x(0) = 0, \dot{x}(0) = 0 \) and \(x(t) = a_0 e^{-bt} \).

 - Use Integrate[] to find \(v(t) \), and the Integrate[] that result to find \(x(t) \).

 - Use DSolve[] to do the same thing:

 \[
 \text{DSolve}[\{x''[t] = a_0 \text{Exp}[-bt], x[0] = 0, x[0] = 0\}, x[t], t]\]

 \[\text{two primes, not a quotation mark}\]

 \[\text{not } t, \text{ just } t \]

 \[\text{remember the special time } 0 \text{ these are } = 0 \text{ not } 0 = t \text{ just } \]

- Here are two equations we will DSolve next week:

 \[
 \begin{align*}
 m \ddot{x} &= -kx \\
 m \ddot{y} &= -am\dot{x} - mg \\
 \end{align*}
 \]

 Try them now if you like, and even Plot or ParametricPlot the results.