Development of CVD Diamond Detectors for the LHC

Harris Kagan
Ohio State University

for the RD42 Collaboration
July 10, 2002, RESMDD02

Outline of the Talk

✦ Introduction
✦ 2001/2002 Milestones
✦ Diamond Properties
✦ Tracking Studies
✦ Diamond Pixel Detectors
✦ Radiation Hardness Studies
✦ Summary and RD42 Plans

¹ HEPHY, Vienna, Austria
² GSI, Darmstadt, Germany
³ LETI/DEIN/SPE/CEA Saclay, France
⁴ LENS, Florence, Italy
⁵ University of Florence, Italy
⁶ LEPSI, IN2P3/CNRS-ULP, Strasbourg, France
⁷ Rutgers University, Piscataway, U.S.A.
⁸ INFN, Milano, Italy
⁹ UMM, Cracow, Poland
¹⁰ CPPM, Marseille, France
¹¹ II.Inst. für Exp. Physik, Hamburg, Germany
¹² NIKHEF, Amsterdam, Netherlands
¹³ University of Torino, Italy
¹⁴ Ohio State University, Columbus, OH, U.S.A.
¹⁵ CERN, Geneva, Switzerland
¹⁶ MPI für Kernphysik, Heidelberg, Germany
¹⁷ FNAL, Batavia, IL, U.S.A.
¹⁸ Politecnico Milano, Italy
¹⁹ University of Toronto, Canada
²⁰ Universität Bonn, Bonn, Germany
²¹ Universität Karlsruhe, Karlsruhe, Germany
²² University of Roma, Italy

♦ Spokespersons

Institutes from HEP, Heavy Ion Physics, and Solid State Physics
Introduction

Motivation: Tracking Devices Close to Interaction Region of Experiments

LHC + SLHC Issues:

→ Inner tracking layers must survive!
→ Inner tracking layers must provide high precision tracking to tag b, t, Higgs, ...
→ Annual replacement of inner layers perhaps?

Diamond Properties:

✦ Radiation hardness
✦ Low dielectric constant → low capacitance
✦ Low leakage current → low readout noise
✦ Room temperature operation, Fast signal collection time

Tracking Detector Implementation:

✦ Based on Chemical Vapor Deposition (CVD) Diamond
✦ Material goes Beyond Silicon in Radiation Hardness
✦ Signal Size and Uniformity? → Fred Hartjes, Andrew Whitehead
✦ Performance of Trackers? → Sung Han
✦ Pixel Detector Performance? → Bob Stone
✦ Radiation Hardness? → Fred Hartjes

Reference → http://rd42.web.cern.ch/RD42
Priorities of Research in 2001/2002

- Increase charge collection distance in a dedicated program with industry to $>250 \, \mu m$
- Test the tracking and radiation tolerance properties of the newest diamonds
- Establish the performance of pixel detectors with radiation hard front-end chips from ATLAS and CMS
- Establish the performance of large detectors
- Test diamond trackers with LHC specific electronics (SCTA128 chip). Irradiate modules, sensors and front-end chips together
- Finalize the geometry and metalisation of diamond LHC pixel detectors
Characterization of Diamond:

- **Signal formation**
- **Signal versus applied electric field**

- Metalization was typically Cr/Au or Ti/Au or Ti/W → new
- Typically operate at 1V/µm
- Drift velocity saturated
- Test Procedure: dot → strip → pixel
Diamond Properties

Growth side of a recent diamond.
In 2000 RD42 entered into a Research Program with DeBeers Industrial Diamond to increase the charge collected from diamond (→ talks by Fred Hartjes, Andrew Whitehead).

Latest Diamonds Measured with a 90Sr Source:

- System Gain = 124 e/mV
- $Q_{MP} = 62$mV $= 7600e$
- Mean Charge = 79mV $= 9800e$
- Source data well separated from 0
- Collection Distance now 275μm
- Most Probable Charge now $\approx 8000e$
- 99% of PH distribution now above 3000e
- FWHM/MP ≈ 0.95 — Si has ≈ 0.5
- This diamond available in large sizes

The Research program worked!
History of Diamond Progress

Charge Collection in DeBeers CVD Diamond

Collection Distance (microns)

Time (year)

RD42 Goal
The Linear Model

- Use 2 samples from the same wafer
- Mark the substrate side on one, the growth side on the other
- Remove material from the unmarked side
Could we make a diamond detector with improved characteristics?

Imagine… → Andrew Whitehead’s talk
CERN Testbeam Setup for Diamond Telescope:

- 100 GeV/c pion/muon beam
- 7 planes of CVD diamond strip sensors each 2cm × 2cm
- 50µm pitch, no intermediate strips → new metalisation procedure
- 2 additional diamond strip sensors for test
- Several silicon sensors for cross checks
- Strip Electronics (2 µsec) → ENC ≈ 100e + 14e/pF
Recent Tracking Studies

Photograph of Two Planes of the Telescope:
PH Distribution on each Strip

Residual versus Track Position

- Uniform signals on all strips → new metalisation
- Pedestal separated from “0” on all strips
- 99% of entries above 2000 e
- Mean signal charge ~ 8640 e → new metalisation
- MP signal charge ~ 6500 e
Recent Tracking Studies

Next advance → take advantage of charge sharing:
Radiation Hard Diamond Tracking Modules:

- Large (2cm × 4cm) Module constructed with new metalisation
- Fully radiation hard SCTA128 electronics → 25ns peaking time
- Tested in a 90Sr → ready for beam test and irradiation
- Charge distribution cleanly separated from the noise tail → S/N > 8/1
- Efficiency will be measured in test beams at 40 MHz clock rate
Diamond Pixel Detectors

Sided View of a Pixel Detector

CVD diamond

Bump Bonds

Read Out Chip
ATLAS FE/1 Pixels (Al)

- Atlas pixel pitch $50\mu m \times 400\mu m$
- Over Metalisation: Al
- Lead-tin solder bumping at IZM in Berlin

CMS Pixels (Ti-W)

- CMS pixel pitch $125\mu m \times 125\mu m$
- Metalization: Ti/W
- Indium bumping at UC Davis

→ Bump bonding yield $\approx 100\%$ for both ATLAS and CMS devices
→ Excellent track and pixel hit correlation

New radiation hard chips produced this year.
Radiation Hardness Studies with Trackers

Irradiation Studies:

Signal to Noise

- Dark current decreases with fluence
- S/N decreases at $2 \times 10^{15}/\text{cm}^2$
- Resolution improves at $2 \times 10^{15}/\text{cm}^2$

Resolution

- Diamond CDS-69 at 0.9 V/µm
 - before irradiation
 - mean 57, most prob. 41
 - FWHM 54
 - after 1 E15 protons/cm2
 - mean 49, most prob. 35
 - FWHM 41
 - after 2.2 E15 protons/cm2
 - and re-metalization
 - mean 47, most prob. 35
 - FWHM 36

- Residual Distributions, Proton Irradiated Diamond
 - before irradiation
 - 2-strip center of gravity method
 - $\sigma = 11.5$ µm
 - after 1E15 p/cm2
 - $\sigma = 9.1$ µm
 - after 2.2 E15 p/cm2
 - and re-metalization
 - $\sigma = 7.4$ µm
Summary

✦ Charge Collection
 270 μm collection distance diamond attained in research contract
 MP signal ≈ 8000 e
 99% of charge distribution above 3000 e
 FWHM/MP ~ 0.95 – Working with manufacturers to increase uniformity
 This diamond process will be moved to production reactors this year

✦ Tracking Results
 Operated a 7 plane telescope with 50 μm pitch detectors
 Attained high efficiency and tracking precision of 10-20 μm
 A rad-hard module with SCTA128 electronics (DM\|LL) was constructed
 Source tests indicate high efficiency at 40 MHz
 Beam test and irradiation \rightarrow this year!
 Constructed first diamond detector with intermediate strips \rightarrow test this year!

Significant progress in the last year
Summary

- **Radiation Hardness of Diamond Trackers**
 - Using trackers allows a correlation between S/N and Resolution
 - Dark current decreases with fluence
 - Some loss of S/N with fluence
 - Resolution improves with fluence
 - All tests will be repeated with more trackers and the latest diamonds

- **Diamond Pixel Detectors**
 - Successfully tested ATLAS and CMS pixel patterns
 - Bump bonding yield ≈ 100%
 - Excellent correlation between telescope and pixel data
 - Reasonable spatial resolution attained
 - Radiation hard chips have just arrived

 More progress in the next year
Future Plans for RD42

✦ Charge Collection
 Continue research program to improve material in progress:
 collection distance → 300 µm (Q = 10, 800e)
 → improved uniformity
 → identification of trapping centers

✦ Radiation Hardness of Diamond Trackers and Pixel Detectors
 Continue tracker irradiations this year, add pixel irradiations
 With Protons:
 → 5 × 10^{15}/cm^2
 With Pions:
 → 5 × 10^{15}/cm^2
 With Neutrons:
 → 5 × 10^{15}/cm^2

✦ Beam Tests with Diamond Trackers and Pixel Detectors
 → trackers with intermediate strips, SCTA128 electronics
 → pixel detectors with ATLAS and CMS radhard electronics now available!
 → construct the first full ATLAS diamond pixel module

✦ Material Research
 → Florence, OSU, Paris, Rome