Recent Developments in Diamond Tracking Devices

Harris Kagan
Ohio State University

Imaging 2003
Jun 27, 2003 - Stockholm, Sweden

Outline of the Talk
✦ Introduction
✦ Tracking Studies
✦ Diamond Pixel Detectors
✦ Radiation Hardness Studies
✦ Radiation Monitoring - a new application
✦ Summary and RD42 Plans
Institutes from HEP, Heavy Ion Physics, and Solid State Physics
Introduction

Motivation: Tracking Devices Close to Interaction Region of Experiments

LHC + SLHC Issues:
- Inner tracking layers must survive!
- Inner tracking layers must provide high precision tracking to tag b, t, Higgs, ...
- Annual replacement of inner layers perhaps?

Diamond Properties:
- Radiation hardness
- Low dielectric constant → low capacitance
- Low leakage current → low readout noise
- Room temperature operation, Fast signal collection time → no cooling

Tracking Detector Implementation:
- Based on Chemical Vapor Deposition (CVD) Diamond
- Material goes Beyond Silicon in Radiation Hardness
- Signal Size and Uniformity?
- Performance of Trackers?
- Pixel Detector Performance?
- Radiation Hardness?

Reference → http://rd42.web.cern.ch/RD42
Characterization of Diamond:

Signal formation

- $Q = \frac{d}{t} Q_0$
 where $d = \text{collection distance} = \text{distance e-h pair move apart}$

- $d = (\mu_e \tau_e + \mu_h \tau_h)E$

- $d = \mu E \tau$

 with $\mu = \mu_e + \mu_h$

 and $\tau = \frac{\mu_e \tau_e + \mu_h \tau_h}{\mu_e + \mu_h}$
Diamond Properties:

- Metalization was typically Cr/Au or Ti/Au or Ti/W → new
- Polycrystalline CVD diamond typically “pumps” by a factor of 1.5-1.8
- Usually operate at 1V/μm → drift velocity saturated
- Test Procedure: dot → strip → pixel
Introduction

Growth side of a recent polycrystalline CVD (pCVD) diamond.

(Courtesy of Element Six)
Introduction

In 2000 RD42 entered into a *Research Program* with Element Six to increase the charge collected from pCVD diamond.

Latest Diamonds Measured with a 90Sr Source:

- System Gain = 124 e/mV
- $Q_{MP} = 62$mV = 7600e
- Mean Charge = 79mV = 9800e
- Source data well separated from 0
- Collection Distance now 275μm
- Most Probable Charge now \approx 8000e
- 99% of PH distribution now above 3000e
- FWHM/MP \approx 0.95 — Si has \approx 0.5
- This diamond available in large sizes

The Research program worked!
Introduction

History of Diamond Progress

Charge Collection in DeBeers CVD Diamond

Collection Distance (microns)

Time (year)

Recent Developments in Diamond Tracking Devices

Imaging 2003
Jun 27, 2003 - Stockholm, Sweden
Recent pCVD diamond wafer ready for test:
Recent Tracking Studies

CERN Testbeam Setup for Diamond Telescope:

- **100 GeV/c pion/muon beam**
- **7 planes of CVD diamond strip sensors each 2cm × 2cm**
- **50μm pitch, no intermediate strips → new metalisation procedure**
- **2 additional diamond strip sensors for test**
- **Several silicon sensors for cross checks**
- **Strip Electronics (2 μsec) → ENC ≈ 100e + 14e/pF**
Recent Tracking Studies

Photograph of Two Planes of the Telescope:
Recent Tracking Studies

PH Distribution on each Strip

Diamond Tracker CDS-90, Signal Charge on Strips

![Graph showing signal charge distribution on strips]

Residual versus Track Position

Diamond, 2-Strip Non-Linear Eta Residuals

![Graph showing residual distribution between two strips]

- Uniform signals on all strips → new metalisation
- Pedestal separated from “0” on all strips
- 99% of entries above 2000 e
- Mean signal charge $\sim 8640 \ e$ → new metalisation
- MP signal charge $\sim 6500 \ e$
Recent Tracking Studies

Residuals

Residuals perpendicular to Strips

Diamond Detector Plane
CDS-83-P1

\[\text{Residuals} = \mu \times \text{entries per 120 entries} \]

\[\begin{align*}
\text{Mean } x & = 0.9702 \\
\text{Mean } y & = 190.9 \\
\text{RMS } x & = 20.31 \\
\text{RMS } y & = 1906 \\
\integ & = 2.039 \times 10^4
\end{align*} \]

Residuals along Strips

Diamond Detector Plane
CDS-83-P1

\[\text{Residuals} = \mu \times \text{entries per 120 entries} \]

\[\begin{align*}
\text{Mean } x & = 0.965 \\
\text{Mean } y & = 1494 \\
\text{RMS } x & = 20.33 \\
\text{RMS } y & = 1867 \\
\integ & = 2.04 \times 10^4
\end{align*} \]
Next advance → take advantage of charge sharing:

Use intermediate strips to force charge sharing.
Recent Tracking Studies

Radiation Hard Diamond Tracking Modules:

- Large (2cm \times 4\text{cm}) Module constructed with new metalisation
- Fully radiation hard SCTA128 electronics \rightarrow 25ns peaking time
- Tested in a ^{90}Sr \rightarrow ready for beam test and irradiation
- Charge distribution cleanly separated from the noise tail \rightarrow S/N $> 8/1$
- Efficiency will be measured in test beams at 40 MHz clock rate
Diamond Pixel Detectors

ATLAS FE/I Pixels (Al)
- Atlas pixel pitch $50\,\mu m \times 400\,\mu m$
- Over Metalisation: Al
- Lead-tin solder bumping at IZM in Berlin

CMS Pixels (Ti-W)
- CMS pixel pitch $125\,\mu m \times 125\,\mu m$
- Metalization: Ti/W
- Indium bumping at UC Davis

→ Bump bonding yield $\approx 100\%$ for both ATLAS and CMS devices

New radiation hard chips produced this year.
Results from an ATLAS pixel detector

Spatial Resolution – Short Direction

Spatial Resolution – Long Direction

✦ Excellent correlation between beam telescope and pixel tracker data!
Radiation Hardness Studies with Trackers

Proton Irradiation Studies with Trackers:

Signal to Noise

- Dark current decreases with fluence
- S/N decreases at $2 \times 10^{15}/\text{cm}^2$
- Resolution improves at $2 \times 10^{15}/\text{cm}^2$

Resolution

- Diamond CDS-69 at 0.9 V/µm
 - Before irradiation: mean 57, most prob. 41, FWHM 54
 - After 1E15 protons/cm2: mean 49, most prob. 35, FWHM 41
 - After 2.2E15 protons/cm2 and re-metalization: mean 47, most prob. 35, FWHM 36

- Residual Distributions, Proton Irradiated Diamond
 - CDS-69 before irradiation: $\sigma = 11.5$ µm
 - After 1E15 p/cm2: $\sigma = 9.1$ µm
 - After 2.2E15 p/cm2 and re-metalization: $\sigma = 7.4$ µm

Imaging 2003
Jun 27, 2003 - Stockholm, Sweden

Recent Developments in Diamond Tracking Devices (page 18)
Harris Kagan
Ohio State University
Radiation Hardness Studies with Trackers

Pion Irradiation Studies with Trackers:

Signal to Noise

- Dark current decreases with fluence
- 50% loss of S/N at $2.9 \times 10^{15} / \text{cm}^2$
- Resolution improves 25% at $2.9 \times 10^{15} / \text{cm}^2$
The Future: Single Crystal CVD Diamond

Could we make a CVD diamond with improved characteristics?

✦ Remove the grain boundaries, defects, etc.
✦ Lower operating voltage.
✦ Eliminate pumping.

This is single crystal CVD (scCVD) diamond: [Isberg et al., Science 297 (2002) 1670].
HV characteristics

![scCVD HV Curve](chart.png)
Radiation Monitoring - A New Application

Motivation:

→ SVT monitoring crucial for silicon operation/abort system
→ Abort beams on large current spikes
→ Measure calibrated daily and integrated dose
→ Presently use silicon PIN diodes at 50V, leakage current increases 2nA/krad
→ After 100fb^{-1} signal $\approx 10\text{nA}$, noise $\approx 1-2\mu\text{A}$
→ Large effort to keep working, system will not last past 2004-05
The BaBar Diamond Radiation Monitor Prototypes:

✦ Package must be small to fit in allocated space
✦ Package must be robust
✦ Package of choice - shown below

Schematic View

Photo of Installed Device
Radiation Monitoring

Calibration:

✦ In BaBar during injection relative to silicon diodes: 5.9 mrad/nC (Feb)
✦ In BaBar during injection relative to silicon diodes: 5.8 mrad/nC (Apr)
✦ Correlation coefficient unchanged over several months

Calibration repeatable but so far limited by systematics
Radiation Monitoring

Data Taking:

System operating for 4 months and works well!
Radiation Monitoring

Leakage Current

- Diamonds have received 250kRad 60Co plus 250kRad while installed
- No observed change in leakage current ($<0.1nA$) or fluctuations (30pA)
- Data directly from SVTRAD system
- Electronic noise ($\approx 0.5nA$) subtracted off

![Graphs showing leakage current over time](image-url)
Radiation Monitoring

Very Fast Time Scale (ns)

- Use a fast amplifier to look at PIN-diode and diamond signals
- Trigger on the PIN-diode signal
- Look at fast spikes: *red = diamond, black = PIN-diode*

Diamond is fast enough for Fast Abort
Summary

✦ Charge Collection
 270 μm collection distance diamond attained in pCVD research contract
 MP signal ≈ 8000 e
 99% of charge distribution above 3000 e
 FWHM/MP ≈ 0.95 – Working with manufacturers to increase uniformity
 This diamond process now in production reactors
 Single crystal CVD diamond is here: >450 μm collection distance attained
 MP signal ≈ 13000 e
 99% of charge distribution above 10000 e
 FWHM/MP ≈ 0.30

✦ Tracking Results
 Operated a 7 plane telescope with 50 μm pitch detectors
 Attained high efficiency and tracking precision of 10-20 μm
 A rad-hard module with DMILL electronics was constructed with S/N=8/1
 Source tests indicate high efficiency at 40 MHz
 Beam test and irradiation → this summer!
 Constructed first diamond detector with intermediate strips → test this July!
Summary

✦ **Radiation Hardness of Diamond Trackers**
 Using trackers allows a correlation between S/N and Resolution
 - Dark current decreases with fluence
 - Some loss of S/N with fluence
 - Resolution improves with fluence
 All tests will be repeated with more trackers and the latest pCVD and scCVD diamonds

✦ **Diamond Pixel Detectors**
 Successfully tested ATLAS and CMS pixel patterns
 - Bump bonding yield \(\approx 100 \% \)
 - Excellent correlation between telescope and pixel data
 - Reasonable spatial resolution attained
 Radiation hard chips have arrived and work
 Single chip and module tests this summer

More progress this Summer
Future Plans for RD42

✦ **Charge Collection**

Continue research program to improve pCVD material:

- collection distance $\rightarrow 300 \mu m$ ($\bar{Q} = 10,800e$)
- \rightarrow improved uniformity
- \rightarrow identification of trapping centers

Begin research program on scCVD diamond

✦ **Radiation Hardness of Diamond Trackers and Pixel Detectors**

Continue tracker irradiations this year, add pixel irradiations

With Protons:

$\rightarrow 5 \times 10^{15} / \text{cm}^2$

With Pions:

$\rightarrow 5 \times 10^{15} / \text{cm}^2$

With Neutrons:

$\rightarrow 5 \times 10^{15} / \text{cm}^2$

✦ **Beam Tests with Diamond Trackers and Pixel Detectors**

\rightarrow trackers with intermediate strips, SCTA128 electronics

\rightarrow pixel detectors with ATLAS and CMS radhard electronics now available!

\rightarrow construct the first full ATLAS diamond pixel module

✦ **Material Research**

\rightarrow Florence, OSU, Paris, Rome