Some of these problems were considered for the second midterm

7.1) A precocious freshman comes to you and says, “I am confused by tunneling. Consider the rectangular potential barrier between \(-a\) and \(a\). When \(E < V_0\) we know that the wave function in the region \(-a < x < a\) is a linear combination of \(\exp(-\kappa x)\) and \(\exp(+\kappa x)\). Now I remember that the current vanishes when the wave function is real. I know that there is an incident current and there is a transmitted current because of tunneling. How can there be a current for \(x > a\) without a current in between? This quantum mechanics sure is weird.” Provide a lucid explanation for this thoughtful student. (4 points)

7.2) Revisiting an old friend, integration by parts: Verify that the momentum operator \(\hat{p}\) obeys
\[
\int_{-\infty}^{\infty} dx \left[\hat{p} \psi(x) \right]^* \phi(x) = \int_{-\infty}^{\infty} dx \psi^* \left[\hat{p} \phi(x) \right]
\]
for any normalizable \(\psi(x)\) and \(\phi(x)\). Technically what you have shown (not proved!) is that \(\hat{p}\) is a Hermitian operator. (2 points)

(7.3) This problem is relevant to the physics of the field-emission microscope. Consider a charged particle(electron) of charge \(-e\) and mass \(m\) in a potential

\[
V(x) = \begin{cases}
0 & (x < 0) \\
V_0 - eE x & (x > 0)
\end{cases}
\]

where we have denoted the electric field by \(E\) to avoid confusing it with the energy. Consider an energy \(0 < E < V_0\) so that the electron sees a triangular barrier. Find the classical turning points. Denote \(V_0 - E\) by \(W\). Find the probability for the electron to penetrate the barrier (defined by a crude version of the so-called WKB approximation) described in the lecture\(^1\):
\[
T \approx e^{-\frac{2}{\hbar} \int_{x_L}^{x_R} dx \sqrt{2m(V(x) - E)}}
\]
where \(x_L\) and \(x_R\) are the classical turning points. Evaluate the integral and find an expression for \(T\). Write \(T\) as
\[
T \approx e^{-\mathcal{E}_0/E}
\]
and for \(W = 2eV\) find a numerical value for \(\mathcal{E}_0\) in \(V/m\). How might one achieve such large fields? (8 points)

\(^1\)Remind yourself of the justification of this result from the expression for the tunneling probability through a constant potential barrier described in the lectures and in the text. It is derived more carefully in Chapter 8, see Equations 8.2 and 8.22.
This was on a midterm exam at Harvard many years ago: Calculate \(< p >, < p^2 > \) and \(< p^3 > \) as function of time for the simple harmonic oscillator state given by

\[
\Psi(x, t) = \frac{1}{\sqrt{2}} \left(\psi_1(x)e^{-i\frac{3}{2}\omega t} + \psi_4(x)e^{-i\frac{9}{2}\omega t} \right).
\]

The notation is the same as in the text. Identify terms that vanish and only evaluate those that you need. (6 points)

You are encouraged to think about this problem if you are going to graduate school in physics but please do not submit.

Consider a one-dimensional potential with \(V(x) = 0 \) for \(x < -a \) (denoted by region \(I \)) and for \(x > a \) (denoted by region \(III \)), i.e., outside the region \([-a, a]\). In the region in between (denoted by \(II \)) the potential is an arbitrary smooth function. For a plane wave \(e^{ikx} \) incident from the left let the wave function that solves the (time-independent) Schrödinger equation be

\[
\psi_I(x) = e^{ikx} + r_L e^{-ikx} \quad \text{and} \quad \psi_{III}(x) = t_L e^{ikx}.
\]

The form of the wave function in \(II \) is messy and unknown. For a plane wave \(e^{-ikx} \) incident from the right let the wave function in region I and III that solves the Schrödinger equation for the same energy be

\[
\psi_I(x) = t_R e^{-ikx} \quad \text{and} \quad \psi_{III}(x) = r_R e^{ikx} + e^{-ikx}.
\]

The goal of the problem is to relate \(t_R \) and \(r_R \) to \(t_L \) and \(r_L \) independently of the form of \(V \). The surprisingly general result can be derived by using two ingredients: (i) If \(\psi(x) \) is a solution to the Schrödinger equation so is \(\psi^*(x) \) assuming that the potential is real. (ii) Superposition principle: If \(\psi_1 \) and \(\psi_2 \) are solutions to the Schrödinger equation so is any linear combination with complex coefficients.