Chapter 3

Kinematics in Two Dimensions:

Projectile motion
Under the influence of gravity alone, an object near the surface of the Earth will accelerate downwards at 9.80 m/s2.

\[a_y = -9.80 \text{ m/s}^2 \quad a_x = 0 \]

\[v_x = v_{ox} = \text{constant} \]
Projectile Motion

Example: The Height of a Kickoff

A placekicker kicks a football at an angle of 40.0 degrees and the initial speed of the ball is 22 m/s. Ignoring air resistance, determine the maximum height that the ball attains.
Projectile Motion

\[v_{oy} = v_o \sin \theta = (22 \text{ m/s}) \sin 40^\circ = 14 \text{ m/s} \]

\[v_{ox} = v_o \cos \theta = (22 \text{ m/s}) \cos 40^\circ = 17 \text{ m/s} \]
Projectile Motion

\[y \quad a_y \quad v_y \quad v_{oy} \quad t \]

<table>
<thead>
<tr>
<th>y</th>
<th>(a_y)</th>
<th>(v_y)</th>
<th>(v_{oy})</th>
<th>(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>-9.80 m/s(^2)</td>
<td>0</td>
<td>14 m/s</td>
<td></td>
</tr>
</tbody>
</table>
Projectile Motion

<table>
<thead>
<tr>
<th>y</th>
<th>a_y</th>
<th>v_y</th>
<th>v_{oy}</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>-9.80 m/s²</td>
<td>0</td>
<td>14 m/s</td>
<td></td>
</tr>
</tbody>
</table>

\[v_y^2 = v_{oy}^2 - 2gy \quad \Rightarrow \quad y = \frac{v_y^2 - v_{oy}^2}{-2g} \]

\[y = \frac{0 - (14 \text{ m/s})^2}{-2(9.8 \text{ m/s}^2)} = +10 \text{ m} \]
Projectile Motion

Example: The Time of Flight of a Kickoff

What is the time of flight between kickoff and landing?
Projectile Motion

\[
\begin{align*}
\text{\(v_{0y}\)} & \quad \theta \\
\text{\(v_0\)} & \\
\text{\(+y\)} & \\
\text{\(+x\)} & \\
\text{\(H = \text{Maximum height}\)} & \\
\text{\(R = \text{Range}\)} & \\
\text{\(a_y\)} & \text{-9.80 m/s}^2 \\
\text{\(v_y\)} & \text{14 m/s} \\
\text{\(v_{0y}\)} & \\
\text{\(t\)} & \\
\end{align*}
\]
Projectile Motion

<table>
<thead>
<tr>
<th>y</th>
<th>a_y</th>
<th>v_y</th>
<th>v_{oy}</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-9.80 m/s²</td>
<td>14 m/s</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

\[
y = v_{oy}t - \frac{1}{2}gt^2
\]

\[
0 = (14 \text{ m/s})t - \frac{1}{2}(9.80 \text{ m/s}^2)t^2
\]

\[
0 = 2(14 \text{ m/s}) - (9.80 \text{ m/s}^2)t
\]

\[
t = 2.9 \text{ s}
\]
Example: The Range of a Kickoff

Calculate the range R of the projectile.

\[x = v_{ox} t \]

\[= (17 \text{ m/s})(2.9 \text{ s}) = +49 \text{ m} \]
Projectile Motion

Example: Shoot the falling object.
A metal can is dropped from a platform at the same time a gun located at some distance from the can and at a lower height tries to shoot it as it falls. If the can is initially a height h above the height of the gun, the gun is a horizontal distance d away from the can, and the muzzle velocity of the bullet is v_0, at what angle θ should the gun be aimed to hit the falling can?
Projectile Motion

If t is the time it takes for the bullet to reach the can $\Rightarrow x_{Bullet} = d = v_{0x}t$

$\therefore t = \frac{d}{v_{0x}} = \frac{d}{v_0 \cos \theta}$

y positions at time t: $y_{Bullet} = v_{0y}t - \frac{1}{2}gt^2 = (v_0 \sin \theta)t - \frac{1}{2}gt^2$ and $y_{Can} = h - \frac{1}{2}gt^2$

Condition for the bullet to hit the can at time $t \Rightarrow y_{Bullet} = y_{Can}$

$(v_0 \sin \theta)t - \frac{1}{2}gt^2 = h - \frac{1}{2}gt^2 \Rightarrow (v_0 \sin \theta)t = h$

$\therefore (v_0 \sin \theta)\left(\frac{d}{v_0 \cos \theta}\right) = h \Rightarrow \tan \theta = \frac{h}{d} \Rightarrow \theta = \tan^{-1}\left(\frac{h}{d}\right)$

\therefore aim the gun at the initial position of the can to hit it while it is falling
At serve, a tennis player aims to hit the ball horizontally.

a) What minimum speed is required for the ball to clear the \(h = 0.90 \text{ m} \) high net \(q = 15.0 \text{ m} \) from the server if the ball is "launched" from a height of \(w = 2.00 \text{ m} \)?

b) Where will the ball land relative to the player if it just clears the net?

c) How long will the ball be in the air?
Projectile Motion

\[y = v_{oy}t - \frac{1}{2}gt^2 \implies t = \sqrt{\frac{-2(w-h)}{-g}} = \sqrt{\frac{2(1.10)}{9.80}} = 0.474 \text{ s} \]

\[x = q = v_{\text{min}}t \implies v_{\text{min}} = \frac{q}{t} = \frac{15.0}{0.474} = 31.6 \text{ m/s} \]
Projectile Motion

\[y = v_{oy} t - \frac{1}{2} gt^2 \implies t_{min} = \sqrt{\frac{-2w}{-g}} = \sqrt{\frac{2(2)}{9.80}} = 0.639 \text{ s} \]

\[x = d_{min} = v_{min} t_{min} = (31.6)(0.639) = 20.2 \text{ m} \]
Projectile Motion

Conceptual Example: Two Ways to Throw a Stone

From the top of a cliff, a person throws two stones. The stones have identical initial speeds, but stone 1 is thrown downward at some angle below the horizontal and stone 2 is thrown at the same angle above the horizontal. Neglecting air resistance, which stone, if either, strikes the water with greater velocity?
Projectile Motion

Initial velocity of stone 1: \(v_0 \) at angle \(-\theta\) from horizontal

\[
\begin{align*}
v_{0x1} &= v_0 \cos(-\theta) = v_0 \cos \theta \\
v_{0y1} &= v_0 \sin(-\theta) = -v_0 \sin \theta
\end{align*}
\]

Initial velocity of stone 2: \(v_0 \) at angle \(+\theta\) from horizontal

\[
\begin{align*}
v_{0x2} &= v_0 \cos \theta \\
v_{0y2} &= v_0 \sin \theta
\end{align*}
\]

Velocity of stone 2 at point \(P \): \(y_2 = 0 \)

\[
v_{x2} = v_{0x2} = v_0 \cos \theta
\]

\[
\begin{align*}
v_{y2} &= v_{0y2} - 2gy_2 = v_{0y2} - 2g \cdot 0 = v_{0y2} \\
v_{y2} &= \pm v_{0y2} = -v_{0y2} = -v_0 \sin \theta
\end{align*}
\]

\[
\therefore v_{0x1} = v_{x2} , \quad v_{0y1} = v_{y2}
\]

→ Both stones strike the water with the same velocity
stone 2 has the same velocity when it is at P as stone 1 has initially, so

\rightarrow both will hit the water with the same velocity (but stone 2 will hit the water later and be horizontally displaced from stone 1)