\(\text{Ch 29) } \)

For a current going clockwise, we use the right-hand rule ("RHHR") to find the direction of \(\mathbf{F} \)

\[
|\mathbf{F}| = |i\mathbf{A}| = (20)(0.1\mathbf{A})(0.5\mathbf{m})(0.05\mathbf{N} \cdot \text{m}) = 0.01 \text{ N} \cdot \text{m}
\]

\[
|\mathbf{F}| = |i\mathbf{A}| = (0.01 \text{ N} \cdot \text{m})(0.5\mathbf{A})(0.5\mathbf{m}) = 0.005 \text{ N} \cdot \text{m} \cdot \cos(20^\circ) = 0.004 \text{ N} \cdot \text{m}
\]

Direction: By RHHR in the opposite direction, or \((-\mathbf{F})\)

45. a) Look at a piece of wire \(\mathbf{dl} \)

- Is out of page

- Force on \(\mathbf{dl} \) is \(\mathbf{F} = i \mathbf{dl} \times \mathbf{B} \)

- At angle \(\theta \) to horizontal,

- By symmetry, opposite side of loop has

\(\mathbf{F}_\theta \) with force pointing this way:

So the \(\mathbf{F} \) components cancel. \(\mathbf{F}_\theta \) component is

\[
\mathbf{F}_\theta = i \mathbf{dl} \mathbf{B} \sin(\theta) \theta \sin(\theta) \theta \sin(\theta)
\]

Now integrate around loop (easy!)

\[
\int \mathbf{F}_\theta = a \mathbf{dl} \int \mathbf{B} \sin(\theta) \theta \sin(\theta)
\]

47. Even though the book usually gives us problems with no friction, we can't assume this unless they say so!

Remember 13P?

\[
\sum \mathbf{F}_x = 0 = f - mg \sin \theta \quad (i)
\]

Also, since there is a current loop in a uniform field:

\[
\mathbf{F}_B = 0, \quad \text{but } \mathbf{E} \cdot \mathbf{A} \neq 0. \quad \text{Sum of torques must be zero to avoid rolling:}
\]

\[
\sum \tau = \int \mathbf{r} \times \mathbf{F} = 0 \quad (ii)
\]

\[
\text{From eq}(i) \quad f = mg \sin \theta \quad \text{area} = 2 \mathbf{L}
\]

So from (ii) get:

\[
mg \sin \theta - (2 \mathbf{L}) B \sin \theta = 0
\]

Cancel out \(B \sin \theta \), get:

\[
\frac{f}{3 \mathbf{N} \mathbf{L}} = 2.45 \mathbf{A}
\]
Ch. 29

5)\(r = 15 \text{ cm} = 0.15 \text{ m} \)
\(\Theta = 2.60 \text{ A} \)
\(\theta = 41^\circ \)
\(\Phi = 12 \text{ m} \)

a) \(\vec{B} = N_i A \times (2.60 \text{ A})(\tau (0.15^2)) = 0.18 \text{ Am}^2 \)

\[\vec{F} = \vec{m} \times \vec{B} \text{ since we assumed a direction for } \vec{l} \]

b) \(|\vec{F}| = (N_i A) \cdot (2.60 \text{ A})(\tau (0.15^2)) \text{ Nm} \)

5)\(\vec{F} \text{ with direction of } \vec{l} = \vec{a} \text{ is not } \vec{a} \text{ or } \vec{a} \times \vec{E} \)
\[\vec{F} = |\vec{l}| = 1 \text{ ft} \text{ of } (6 \text{ in})^2 - (3 \text{ in})^2 \text{ ft}^2 \]
\[= 1.10 \text{ ft lb} \]

HW8

Ch. 30

4) From the diagram,\(\vec{B} \) is direction.

From MRI, direction of \(\vec{B} \) is direction as shown. It points opposite the \(\vec{B} \) field for a certain angle \(\theta \), according to the way we draw my axes. \(\theta = \frac{\pi}{2} \)

Anyway, we use \(\beta = \frac{B}{B_0} = 5 \text{ mT} \) to see which gives us calculation (at \(\theta = \beta \))

\[\gamma = \frac{M_0 \beta}{2 \pi} = 4 \times 10^{-3} \text{ m} \]

7) By MRI, \(\vec{B} \) contributions from straight wires point out of the page, curved part gives \(\vec{B} \) into page.

Straight wires by eq. 30-9: \(\vec{B} = \frac{2}{I} \left(\frac{M_0 \beta}{4\pi \tau} \right) \)

Center of semi-circular curved wire:

eq 30-11 \(\vec{B} = \frac{M_0 \beta}{4\pi \tau} \)

\(\vec{B} = \vec{B}_s - \vec{B}_c = 0 \Rightarrow \beta = \frac{M_0 \beta}{4\pi \tau} \cdot \tau = 2 \text{ rad} \)
c) Each straight segment contributes nothing.
 Long should use \(B = \frac{\mu_0 L}{2\pi r} \), where \(L \) is the length of the wire, \(r \) the radius at the center (radius is \(2R \) or \(\frac{1}{2} \) of circle).
 Eq. 30-93 \(B = \frac{\mu_0 I}{2\pi r} \) \(\frac{1}{2} \) by RHR
 \(B = \frac{\mu_0 I}{4\pi R} \) (into page)

 c) \(\vec{B} = \vec{0} + \vec{B}_c = \frac{\mu_0 I}{4\pi R} \) \(\frac{1}{2} \) (as long as you say into page, we don't care if you call that \(\vec{B} \) or \(\vec{B} \).

24) \(\vec{P}_1 = \vec{F}_1 \times \vec{B}_1 \)

 To find force use \(P = \vec{F} \times \vec{B} \)

 Since \(\vec{E} \) is parallel to \(\vec{B} \),

 \(1 \) cancels \(\vec{B}_1 = \frac{\mu_0 I_1}{2\pi R} \) \(\vec{E} \) just means into page since square loop

 Segments ii + iv \(\vec{P}_i = -\vec{P}_i \) in plane of page.

 Since \(B \) is not \(\theta \)-dependent, the minus sign is due to \(\vec{E} \).

 \(\vec{F} = \vec{F}_i + \vec{F}_iv = \frac{\mu_0 I_1 L}{2\pi} \left(\frac{1}{\alpha + i} - \frac{1}{\alpha - i} \right) \vec{E} \) direction comes from \(\theta \).

 \(\frac{1}{\alpha + \beta} \) is directed toward straight wire.
37) to make a hole appear in our mathematical description, we need (a) current going one way in wire with radius a, (b) current going opposite that in wire radius b. How much current? The densities have to be the same:

$$J = \frac{i}{(a^2 - b^2)}$$

(a) due to wire a,

$$B = \frac{\mu_0 i}{2\pi a} \frac{R_a}{R_a^2} \Rightarrow B = \frac{\mu_0 i}{2\pi a} \frac{R_a}{R_a^2}$$

Similarly for b

$$B = \frac{\mu_0 i}{2\pi b} \frac{R_b}{R_b^2}$$

but $R_a^2 = a^2 - b^2$, $R_b^2 = a^2 - b^2$ so field is

$$B = \frac{\mu_0 i}{(a^2 - b^2)2\pi}$$

(b): $b = 0$, then there's no hole: $B = 0$. $d = 0$, $r = 0$ which is true for center of cylindrical shell of current.

c) deserves its own page \rightarrow next

$$B_x = B_1 \sin \theta_1 - B_2 \sin \theta_2$$

$$B_x = \frac{\mu_0 i}{2\pi (a^2 - b^2)} \left(R_1 \sin \theta_1 - R_2 \sin \theta_2 \right)$$

$$\therefore B_x = 0$$

$$B_y = B_1 \cos \theta_1 + B_2 \cos \theta_2$$

$$B_y = \frac{\mu_0 i}{2\pi (a^2 - b^2)} \left(R_1 \cos \theta_1 + R_2 \cos \theta_2 \right)$$

$$\therefore B_y = 0$$

Independent of $r_1, r_2, \theta_1, \theta_2$

The field is uniform inside hole!

Wheew!