Results of Radiation Test of Cathode Front-end Board in the CMS Endcap Muon System

B. Bylsma, L.S. Durkin, J. Gu, T.Y. Ling, M. Tripathi

Reported by T.Y. Ling
LEB 2000
Radiation Levels in Endcap Muon

Calculations by M. Huhtinen

Integrated over 10 LHC years
(5x10^7 s at 10^{34} cm^{-2}s^{-1})

Neutron Fluence (>100 keV): (0.02 - 6) x 10^{11} cm^{-2}
Total Ionizing Dose: (0.007 - 1.8) kRad
Test Requirements

• Since all *on-chamber* ASIC’s and COTS are the same for all chambers, they should survive the worst-case radiation environment. (Use calculated levels times a safety factor of 3)

• Expose ASIC’s COTS on CFEB to radiation
 – Measure SEE (SEU and SEL) cross sections for COTS and ASIC’s. Use the measurements to predict SEE rates for neutron fluence of $2 \times 10^{12} \text{ cm}^{-2}$
 – Measure degradation of analog performance for ASIC’s due to TID effects up to a dose of 5 kRad
 – Measure degradation of analog performance due to displacement damage of *bipolar* for an equivalent neutron fluence of $2 \times 10^{12} \text{ cm}^{-2}$
Modeling and Calculations by Huhtinen and Faccio shows:

- At LHC environment SEU dominated by high energy hadrons (>20 MeV)
- For these energies, SEU cross section ~independent of particle type and energy

Measure SEU Xection using 60-200 Mev proton beam

<table>
<thead>
<tr>
<th></th>
<th>63 MeV Protons (UC Davis)</th>
<th>1 MeV Neutrons (Ohio State)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS Devices</td>
<td>SEU, SEL, TID</td>
<td></td>
</tr>
<tr>
<td>Bipolars Devices</td>
<td>SEU, SEL, TID</td>
<td>Displacement</td>
</tr>
</tbody>
</table>
Cathode Front-end Board

- Preamp-shaper ASIC
- SCA ASIC
- Comparator ASIC
- Control FPGA (XILINX Spartan XCS30XL)
- CPLD (XILINX XC9536XL)
- MUX FPGA (XILINX Spartan XCS30XL)
- ADC
- Channel Links

Dimensions:
- 11.5" height
- 7" width
Test Setup

- Beam collimated to irradiate one ASIC or COTS at a time
- Readout data through DAQ chain intended for the “final” system

63 MeV proton beam
Preamp-shaper ASIC

- No single event latch-up for proton fluence of $2.28 \times 10^{12} \text{ p/cm}^2$
- No shift register errors
- Gain decreases by factor of 2.8, from 0-300 Krams (~ 2 hr run). Not a problem at LHC rates.
- No change in amplifier noise 0-30 kRad.
Switched Capacitor Array ASIC

- No single event latch-up for proton fluence of 1.7×10^{12} p/cm2
- No degradation of analog performance
- Slight decrease in digitized pulse height vs dose due to output amp gain drop. Not a problem at LHC rates.
- Negligible change in noise and pedestal 0 - 10 kRad.
Comparator ASIC

- No single event latch-up for proton fluence of $1.1 \times 10^{12} \text{ p/cm}^2$
- Shift of thresholds and offsets < 0.4 mV
ADC

- No single event latch-up for proton fluence of 2.7×10^{11} p/cm2
- No degradation of performance
Readout Controller FPGA

XILINX Spartan XCS30XL

Irradiation: 9.9×10^{10} p/cm2

(2 runs; TID=13.4 Krads)

- No Single Event Latch-up.
- Capacitor block numbers predicted and checked with blocks numbers read back.
- SCA read/write addresses read back and checked.
- 27 Errors detected. All are recoverable by reloading FPGA.
 - 70% of these errors associated with a change in configuration memory. For these, only 1 in 16 configuration memory changes related to observed controller error
- **SEU cross section** $= 2.7 \times 10^{-10}$ cm2
XILINX Spartan XCS30XL
Irradiation: 2.86×10^{11} p/cm2
(6 runs; TID=38.1 Krads)

- No Single Event Latch-up
- 34 MUX controller errors detected. All recoverable by reloading FPGA. (70% of these errors associated with a change in configuration memory.)
- SEU cross section = 1.2×10^{-10} cm2
- Configuration errors occurs after 13.3 Krad and increase drastically after 23 Krad. These are not cleared by reset, but do not effect controller functioning.
- 5th run stops when MUX quit working (35.7 Krad). The same chip recovers after 2 hours.
XILINX CPLD XC9536XL

Chip 1: 2.8×10^{11} p/cm2 (3 runs; TID=37.8 Krads)
- No Single Event Latch-up
- No configuration errors
- 106 errors detected. All recoverable by reload.
- Chip died after exposed to 42.7 Krads

Chip 2: 3.1×10^{11} p/cm2 (2 runs; TID= 41.3Krads)
- No Single Event Latch-up
- No configuration errors
- 117 errors detected. All recoverable by reload.

SEU cross section = 3.8×10^{-10} cm2
XILINX Virtex XCV50
Irradiation: $9.3 \times 10^{10} \text{ p/cm}^2$
(5 runs; TID=12.5 Krads)

- No Single Event Latch-up.
- Capacitor block numbers predicted and checked w/ blocks numbers read back.
- SCA read/write addresses read back and checked.
- 16 Errors detected. All are recoverable by reloading FPGA.
- SEU cross section $= 1.7 \times 10^{-10} \text{ cm}^2$
Summary of SEU Measurements

<table>
<thead>
<tr>
<th>Device (Function)</th>
<th>Proton Fluence (10^{11} \text{ cm}^{-2})</th>
<th>Dosage (kRad)</th>
<th>Number of SEU's</th>
<th>SEU Xection (10^{-10} \text{ cm}^{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>XILINX Spartan XCS30XL (Readout Controller)</td>
<td>1.0</td>
<td>13.4</td>
<td>27</td>
<td>2.7</td>
</tr>
<tr>
<td>XILINX Spartan XCS30XL (Multiplexer)</td>
<td>2.9</td>
<td>38.1</td>
<td>34</td>
<td>1.2</td>
</tr>
<tr>
<td>XILINX CPLD XC9536XL (Chip 1)</td>
<td>2.8</td>
<td>37.8</td>
<td>106</td>
<td>3.8</td>
</tr>
<tr>
<td>XILINX CPLD XC9536XL (Chip 2)</td>
<td>3.1</td>
<td>41.3</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>XILINX Virtex XCV50 (Readout Controller & MUX)</td>
<td>0.9</td>
<td>12.5</td>
<td>16</td>
<td>1.7</td>
</tr>
<tr>
<td>Channel Link Receiver</td>
<td>14.8</td>
<td>200</td>
<td>277</td>
<td>1.9</td>
</tr>
<tr>
<td>Channel Link Transmitter</td>
<td>14.8</td>
<td>200</td>
<td>1023</td>
<td>6.9</td>
</tr>
</tbody>
</table>
Irradiated with 1 MeV neutrons at OSU
Fluence = $2.8 \times 10^{12} / \text{cm}^2$
Following devices passed the test
- LM1117-adj (adjustable voltage regulator)
- LM4120-3.3 (voltage reference; 3.3 V, 5 mA)
- LM4120-1.8 (voltage reference; 1.8 V, 5 mA)
- LM4041 (shunt voltage reference)
- SDA321 (Diode Array – reversed biased)
- Red LED
- AD8011 (300 MHz Current Feedback OpAmp)

Need a rad-tolerant 2.5 V regulator
 - Good candidate identified. Need to be tested.
Conclusions

- **Cumulative effects**
 - **Total ionization dosage (with 63 MeV protons)**
 - No deterioration of analog performance up to 10 krad for all three CMOS ASIC’s
 - All FPGA’s survive beyond dosage of 30 krad
 - **Displacement damage (with 2x10^{12} cm^{-2} n’s @ 1 MeV)**
 - Usable voltage regulators and references identified
 - Protection diodes OK

- **Single-Event Effects**
 - No latch-up for all ASIC’s up to 2x10^{12} p cm^{-2}
 - **Single Event Upset (SEU)**
 - Cross sections measured for all FPGA’s, C-Links.
 - All SEU’s in recoverable by reloading FPGA’s