Photoelectric Effect

Hertz 1887

Ultra-violet light shining on a metal surface ejects particles with negative electric charge.

Thompson 1897: charged particles are electrons

Leonard 1902

Connect collector to metal by a wire. Study current I as function of voltage V.

![Diagram of photoelectric effect with collector, metal, and voltage source with ammeter and battery.]
- There is a minimum voltage V_{stop} above which electrons are completely stopped.

- V_{stop} does not depend on intensity of light.

- For $V < V_{\text{stop}}$, the current I is proportional to the intensity of light.

- V_{stop} is larger for light of higher frequency.

\Rightarrow

- Electrons in metal have energy distribution with a sharp maximum (Fermi energy E_F).

- Intensity of light determines number of electrons that absorb energy.

- Frequency of light determines the maximum energy they can absorb.

$$E_{\text{max}} = eV_{\text{stop}}$$
Light of frequency ν is absorbed by an electron in lumps of energy $h\nu$ (quantum).

If an electron of energy E absorbs light, its energy becomes

$$E' = E + h\nu$$

- Electron inside metal has energy distribution with sharp maximum.
- Additional energy required to escape metal: W (= E_b ?)
 "work function" ("binding energy" ?)
- Electron absorbs quantum of energy $h\nu$ from light.
- Electrons that escape from metal have kinetic energy distribution with sharp maximum E_{max}.
metal-air interface

\[V_0 = -(E_F + W) \]

Electron energy \(E \)

Before absorbing quantum: \(E < -V_0 + E_F \)

After absorbing quantum: \(E < -V_0 + E_F + h\nu = -W + h\nu \)

After escaping metal: \(E < -W + h\nu \)

Maximum kinetic energy: \(E_{max} = h\nu - W \)
Photelectric experiment

- electron inside metal absorbs quantum of light escapes from metal

- initial kinetic energy: $E < E_{\text{max}} = h\nu - W$

- electron can reach collector only if $E > eV$

- photovoltaic current stops flowing when V is increased to V_{stop}

- $eV_{\text{stop}} = h\nu - W$

Prediction (Einstein)
- V_{stop} increases linearly with ν
- with same slope $\frac{e}{h}$ for all metals

Confirmation: Millikan 1916

Nobel prizes: Einstein 1921, Millikan 1923