DMB6VME

--- VME interface FPGA design for DAQME version 8, production

CMS CSC DAQ Motherboard VME interface FPGA

VME interface and Slow control

ELECTRONICS LAB
PHYSICS DEPARTMENT
THE OHIO STATE UNIVERSITY
174 WEST 18TH AVE
COLUMBUS OHIO 43210
DAQMB VME interface FPGA Design
This FPGA do the slow control for CFEB and DAQMB by VME --> JTAG, or direct VME command
Modification history:
 Mar. 11, 2003: Copy from DMBS2V
 July 30, 2003: Replaced the CLKMAX and CLKMON in P50s and P80s by SLOWCLK and CLKMAX and CLKMON as CEs
 Sept. 29, 2003: Modify the Data Bus enable logic. May need further check
FastCLK: 40MHz
MidCLK: 10MHz
SlowCLK: 2.5MHz
SlowCLK2: 1.25MHz

Fastclk is in phase with Midclk, but they are not in phase with Slowclk. PROMs and ADCs use slowclk. Controller FPGA and DAC use Midclk.
CFEB JTAG Clock: 1.25MHz, which is controlled by ENABLE.
The DAC can work at 10MHz, FPGA can work at 33MHz, PROM can work at 10MHz, but it can only be Re-programmed at about 1.25MHz
The guess number for BUCKEYE is 5MHz
DAQMB Controller FPGA JTAG Clock: 10MHz, which is synchronized with MIDCLK
The FPGA can work at 33MHz, the Serial Flash Memory can work at 20MHz
DAQMB ISPROMs' JTAG clock: 1.25MHz, half of SLOWCLK
The normal JTAG command can work at 10MHz, but for In_System_Programming, it must be slow, such as 1.25MHz
The ISP does not work at 2.5MHz or faster

Both FPGA and CPLD will drive VPROM's JTAG line, tri-state when not in use
Serial ADC (MAX1270/1271) Interface clock: 1.25MHz, Divided SLOWCLOCK is used
The ADC1270/1271 can work at a frequency from 0.1MHz to 2.0MHz
Serial DAC (MAX5154/5155) interface clock: 5MHz

The MAX 5154/5155 requires the minimum clock period is 100ns.
Flash Memory clock: SLOWCLK2, which is 1.25MHz. There is a timer inside using this clock.

Comment: CFEB clock: 2.5MHz in normal JTAG mode.

For AT29LV256, call FLASH29LV256
For AT49BV512, call FLASH49BV512
DTACK for Load Instruction/Data Register command
CFEB Selection and Readback logic

THE OHIO STATE UNIVERSITY
PHYSICS DEPARTMENT ELECTRONICS LAB
174 WEST 18TH AVE. COLUMBUS OH 43210

CFEBs JTAG control
DAQMB VME Interface
CMS CSC Electronics

GU 2A
DATE 20C
FILE 8-29-2001_14:03

DAQMBV

CFEB JTAG commands:
00 || Shift data, no header, no tailer
01 || Shift data with header only
02 || Shift data with tailer only
03 || Shift data with header and tailer
04 ||
05 || Read TDO register
06 || Reset JTAG State machine
07 || Shift Instruction register
08 || Write CFEB Select Register
09 || Read CFEB Select Register
CFEB JTAG commands:

- 00 || Shift data, no header, no tailer
- 01 || Shift data with header only
- 02 || Shift data with tailer only
- 03 || Shift data with header and tailer
- 04 ||
- 05 || Read TDO register
- 06 || Reset JTAG State machine
- 07 || Shift Instruction register

DAQMB Control FPGA JTAG command Decoder

DAQMB VME Interface

CMS CSC Electronics
THE OHIO STATE UNIVERSITY
PHYSICS DEPARTMENT ELECTRONICS LAB
174 WEST 18TH AVE, COLUMBUS OH 43210

DAQMB Controller FPGA’s PROM JTAG control
DAQMB VME Interface
CMS CSC Electronics

GU 2C
DESCRIPT DMB6VME

DATE 3-11-2003_14:18
FILE CPROMJTAG .1
PAGE 40
CFEB JTAG command decode

- **00** Shift data, no header, no tailer
- **01** Shift data with header only
- **02** Shift data with tailer only
- **03** Shift data with header and tailer
- **04**
- **05** Read TDO register
- **06** Reset JTAG State machine
- **07** Shift Instruction register
DTACK for Load Instruction/Data Register command
CFEB JTAG commands:
00 || Shift data, no header, no tailer
01 || Shift data with header only
02 || Shift data with tailer only
03 || Shift data with header and tailer
04 ||
05 || Read TDO register
06 || Reset JTAG State machine
07 || Shift Instruction register
Title

The Ohio State University
Physics Department Electronics Lab
174 West 18th Ave, Columbus OH 43210

Serial ADC Interface MAX1271
DAQMB VME Interface
CMS CSC Electronics

GU 2D PARENT PAGE
FILE
PAGE
PROJECT
7-30-2003_10:03
SERADC_150
Burr-Brown ADS7809, or Analog Devices AD9777 interface logic

Procedure:
- Pull BBBCONV low for 400ns after VME command, then go back high. Disable the counter.
- After ADC BUSY go low to high, send another BBBCONV low for 400ns, and enable the counter.
- At same time disable the BUSYSHOT. After 16 Clock cycles, set DTACK low to indicate Data Ready.
- Reset the DTACK after VME Address changed, the BB Read cycle ends.
Serial ADC Selection and Readback Logic

- ADC Selection and Readback
- DAQMB VME Interface
- CMS CSC Electronics

THE OHIO STATE UNIVERSITY
PHYSICS DEPARTMENT ELECTRONICS LAB
174 WEST 18TH AVE. COLUMBUS OH 43210

ADC Selection and Readback
DAQMB VME Interface
CMS CSC Electronics

GU 2D
SUBJECT DMB6VME

3-11-2003_14:20 SERADC .3 50B
CFEB JTAG command decode

Serial ADC Command Decoder:
00 || Write Control Byte to MAX1271's
01 || Read Data Back from 1271 Register
02 ||
03 || Read Data Back from Burr-Brown Register
04 ||
05 ||
06 ||
08 || Write Serial ADC Chip Select Register
09 || Read Serial ADC Chip Select Register
Parallel FIFO Read/Write Command Decoder:

- **00**: Write to FIFO, 00 for LastWord/Overlap (no last, no overlap)
- **01**: Write to FIFO, 01 for LastWord/Overlap (last, no overlap)
- **02**: Write to FIFO, 10 for LastWord/Overlap (no last, overlap)
- **03**: Write to FIFO, 11 for LastWord/Overlap (last and overlap)
- **04**: Read low order 16 bits, no FIFO read counter Increment
- **05**: Read low order 16 bits, and FIFO read counter Increment
- **06**: Read high order 2 bits, no FIFO read counter Increment
- **07**: Read high order 2 bits, and FIFO read counter Increment
- **08**: Write FIFO Select Register, (more than 1 FIFO can be enabled)
- **09**: Read FIFO Select Register, just to check 08 function
- **11**: Just Increment FIFO Read Counter
Serial ADC Selection and Readback Logic
Serial ADC Command Decoder:
- 00 || Write Control Byte to MAX1271's
- 01 || Read Data Back from 1271 Register
- 02 ||
- 03 || Write Low Voltage Power Register
- 05 || Read Low Voltage Power Register
- 06 ||
- 07 ||
- 08 || Write Low Voltage Monitoring Serial ADC Chip Select Register
- 09 || Read Low Voltage Monitoring Serial ADC Chip Select Register
It takes 10sec to erase the flash memory
Erase timing: Load six command, and wait for 10 Sec.

Address

-WE
-CE
OE

Data
Because the program happens on ~WE edge, the glitch on A/D lines do not matter.

Program timing:

- Address: 10ns
- Data: >100ns
- ~WE: >10ns
- PCOUNTs: >100ns
- TIMEs: 100ns
- SLOWCLK: 100B

CMS CSC Electronics

Flash Memory, Program the memory
DAQMB VME Interface
CMS CSC Electronics

THE OHIO STATE UNIVERSITY
PHYSICS DEPARTMENT ELECTRONICS LAB
174 WEST 18TH AVE, COLUMBUS OH 43210

GU 21
DMB6VME

3-21-2003_15:20 FLASH49BV512 .3 100B
Be careful to generate the Buckeye load data stream.

Bit 0 is the TMS, normally stay 0; set 1 for the very last bit and 1 for two extra bits
Bit[1:5] is the Buckeye bit stream for CFEB[1:5], put 2 extra bit at the end to properly end the JTAG data load

This includes shift in 111111 to enable all six buckeyes.

The Data files for Buckeye shift:

Bit 0: TMS: 0 0 0 1 1 0 0 0 0 0
Bit 1: TD1: x x x 0 a b c y z Buckeye shift in bits for CFEB1, totally 288 + 3 + 2
Bit 3: TD3: x x x 0 a b c y z Buckeye shift in bits for CFEB3, totally 288 + 3 + 2
Bit 4: TD4: x x x 0 a b c y z Buckeye shift in bits for CFEB4, totally 288 + 3 + 2
Bit 5: TD5: x x x 0 a b c y z Buckeye shift in bits for CFEB5, totally 288 + 3 + 2
Bit 6 and 7: Do not care

Data file Byte: 0 0 0 1 1 0 0 0 0 0 Low order byte first
CFEB JTAG commands:
00 || Initialize PROGRAM process
01 || Load in BUCKEYE pattern
02 || Program data to Flash Memory
03 || Read back Flash Memory
04 || Initialize Buckeye
05 || Erase the Flash Memory

Working process
INITIAL: to initialize the counters and ready for Load block RAM
LOADBUF: one byte each time, bit0: TMS, usually 0; bit[5:1]: Buckeye shift pattern for CFEB[5:1]
READFM: optional to check the Block RAM content
PROGRAM: Load the Block RAM into Flash Memory
BUCKEYE: Shift in Buckeye patterns by Flash Memory
Para-Out Shift Reg w/ Enable & Async Clr

Spartan2 Family SR16CRE Macro, Right Shift 16-Bit Loadable Ser/Para-In, right shift 1, Modified from XILINX, SR16CLE

Copyright (c) 1993, Xilinx Inc.