Last time: Showed that vector fields transform as 4-vectors under Lorentz transformations.

\[A_\mu \rightarrow A'_{\nu(x')} = \Lambda^\mu_\nu A^\nu(x) \]
\[A^\mu \rightarrow A'^\mu(x') = \Lambda^\mu_\nu A^\nu(x) \]

We showed that \(\gamma_4 \) is a scalar.

\[\gamma_5 = i\gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \]

\(\gamma_5 \gamma_4 \) is pseudoscalar (changes sign under \(P \)).

We showed that \(\gamma_5 \gamma_4 \) is a 4-vector!

\(\gamma_5 \gamma_4 \gamma_5 \gamma_4 \) is pseudovector.

Dirac Lagrangian density

\[L = \bar{\psi} \left(i \gamma^\mu \partial_\mu - m \right) \psi \]

EOM: \(\frac{\delta L}{\delta \bar{\psi}} = 0 \Rightarrow \left(i \gamma^\mu \partial_\mu - m \right) \psi = 0 \)

(Def.) \(\sigma_{\mu \nu} = \frac{i}{2} \left[\delta^\mu_\nu, \delta^{\lambda}_\lambda \right] \)

\(\Rightarrow \psi(x) \rightarrow \psi'(x') = e^{-i \frac{\gamma^\mu \sigma_{\mu \nu}}{2} \partial_\nu} \psi(x) \)

under Lorentz transformations.
Dirac Lagrangian is
\[L = \bar{\psi} [i \gamma^\mu \partial_\mu - m] \psi \]

Any symmetries? Yes, we have \(L \to L \) under
\(\psi \to e^{i \alpha} \psi, \quad \bar{\psi} \to e^{-i \alpha} \bar{\psi} \), \(\alpha \) a real number
\(\Rightarrow \delta L = 0 \Rightarrow \) remember we had for scalar fields

\[\delta L = \sum_a \partial_\mu \left[\frac{\delta \bar{\psi}_a}{\delta (\partial_\mu \psi_a)} \right] \]

\(\Rightarrow \) similarly for spinors \(\psi \) & \(\bar{\psi} \) we have

\[\delta L = \partial_\mu \left[\frac{\delta \bar{\psi}_a}{\delta (\partial_\mu \psi_a)} \delta \psi_a + \frac{\delta \bar{\psi}_a}{\delta (\partial_\mu \bar{\psi}_a)} \delta \bar{\psi}_a \right] = 0 \]

\(\Rightarrow \) get

\[\partial_\mu \left[\bar{\psi} \gamma^\mu \psi \right] = 0 \]

\(\Rightarrow \) get

\[\partial_\mu \left[\bar{\psi} \gamma^\mu \psi \right] = 0 \Rightarrow \]

\[j^\mu = \bar{\psi} \gamma^\mu \psi \]

is a conserved current: \(\partial_\mu j^\mu = 0 \) explicitly.
In general can construct any bi-linear object $\bar{\psi} \Gamma \psi$, with Γ a 4×4 matrix. Full basis with definite Lorentz-transform properties of 4×4 matrices is

$$
\Gamma = \{ 1, \gamma^0, \gamma^5, \gamma^0 \gamma^5, \sigma^{\mu \nu} \}
$$

where $\sigma^{\mu \nu} = \frac{i}{2} [\gamma^\mu, \gamma^\nu]$. 16 matrices.

One has:

<table>
<thead>
<tr>
<th>Bilinear</th>
<th>Transformation law</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\psi} \psi$</td>
<td>scalar</td>
</tr>
<tr>
<td>$\bar{\psi} \gamma^5 \psi$</td>
<td>pseudo scalar</td>
</tr>
<tr>
<td>$\bar{\psi} \gamma^\mu \psi$</td>
<td>vector</td>
</tr>
<tr>
<td>$\bar{\psi} \gamma^\mu \gamma^5 \psi$</td>
<td>axial vector</td>
</tr>
<tr>
<td>$\bar{\psi} \sigma^{\mu \nu} \psi$</td>
<td>antisymmetric tensor</td>
</tr>
</tbody>
</table>

$\gamma^5 = \bar{\psi} \gamma^5 \psi$ is also a 4-vector (axial current).

Is it conserved? In fact $\partial_\mu j^{\mu 5} = 2im \bar{\psi} \gamma^5 \psi$

\Rightarrow it is conserved only if $m=0$.

Energy-momentum tensor: $T_{\mu \nu} = \frac{8 \pi}{\delta(0^4)} \frac{\delta^\mu}{\delta(\phi^4)} \frac{\delta^\nu}{\delta(\phi^4)} \bar{\psi} \gamma^\nu \psi$.

- Good by analogy with scalar field.
We get
\[T_{\mu \nu} = i \overline{\psi} \delta_{\mu} \partial_{\nu} \psi - g_{\mu \nu} \left[\overline{\psi} (i \gamma^a \partial_a - m) \psi \right] \]

\[\Rightarrow T_{\mu \nu} = \overline{\psi} \left[i \delta_{\mu} \partial_{\nu} - g_{\mu \nu} \left(i \gamma^a \partial_a + g_{\mu \nu} \right) \right] \psi \]

However, we can simplify this by using Dirac equation \((i \gamma^a \partial_a - m) \psi = 0 \Rightarrow \) get

\[T_{\mu \nu} = i \overline{\psi} \delta_{\mu} \partial_{\nu} \psi \] (not symmetric)

Remember that the Hamiltonian \(H = \int d^3x \ T_{00} \).

We get
\[H = \int d^3x \ i \overline{\psi} \gamma^0 \partial_0 \psi = \int d^3x \ i \gamma^+ \partial_+ \psi \]

\[\psi^+ \gamma^0 \gamma^+ \psi \]

\[\frac{1}{1} \]

\[\Rightarrow H = \int d^3x \ i \gamma^+ \partial_+ \psi \] problem: \(H \) is not \(\geq 0 \! \)

(This is different from scalar fields, for which \(H \) was \(\geq 0 \) for the field!)

\(T_{\mu \nu} \) can be symmetrized:
\[T_{\mu \nu}^{\text{sym}} = i \overline{\psi} \left[\frac{1}{2} \left(\delta_{\mu} \partial_{\nu} + \delta_{\nu} \partial_{\mu} \right) \right] \psi \]

we can show that \(\partial^\mu T_{\mu \nu}^{\text{sym}} = 0 \).

Here \(\frac{1}{2} \delta_{\mu} \psi = \frac{1}{2} \partial_{\mu} \psi = \partial_{\mu} \psi \).

Here \(\frac{1}{2} \delta_{\mu} \psi = \frac{1}{2} \partial_{\mu} \psi = \partial_{\mu} \psi \).
Useful 8-matrix formulas:

\[\{ 8^i, 8^j \} = 2 \eta^{ij} \]
\[(\bar{8}^i)^+ = \bar{8}^i, (\bar{8}^i)^+ = -\bar{8}^i \]
\[\bar{8}^i \bar{8}^j + \bar{8}^j \bar{8}^i \]
\[\bar{8}^5 = \bar{8}^0 \bar{8}^1 \bar{8}^2 \bar{8}^3, \quad (\bar{8}^5)^+ = \bar{8}^5 \]
\[(\bar{8}^0)^2 = -(\bar{8}^i)^2 = 1, \quad (\bar{8}^5)^2 = 1. \]
\[\{ \bar{8}^5, 8^R \} = 0 \quad \text{easy to see that } (\bar{8}^R)^2 = g^{R\mu} \]
\[\text{no summation} \]

(Easy to check.)

Also \(8^R 8^R = 4 \), \(8^R 8^R 8^R = -2 \bar{8}^R \).

Finally, note that \(\bar{8}^5 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) in Weyl basis

\(\Rightarrow \) Def. \(P_L = \frac{1 - \bar{8}^5}{2}, \quad P_R = \frac{1 + \bar{8}^5}{2} \)

\(\Rightarrow \) \(P_L \psi = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \chi_L \\ \chi_R \end{pmatrix} = \begin{pmatrix} \chi_L \\ 0 \end{pmatrix} \equiv \psi_L \)

\(P_R \psi = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \chi_L \\ \chi_R \end{pmatrix} = \begin{pmatrix} 0 \\ \chi_R \end{pmatrix} \equiv \psi_R \)

Can check that \(P_L^2 = P_L, \quad P_R^2 = P_R, \quad P_L P_R = P_R P_L = 0 \).

(\(\psi_L \) = helicity \(-\frac{1}{2}\), \(\psi_R \) = helicity \(\frac{1}{2} \), more later.)
Take Dirac equation \[i \gamma^\mu \partial_\mu - m \] \(\psi(x) = 0 \).

In momentum space \(\psi(x) = \int \frac{d^4p}{(2\pi)^4} e^{-i p \cdot x} \psi(p) \)

\[(\gamma^\mu p_\mu - m) \psi(p) = 0 \]; If \(m = 0 \) \(\Rightarrow \gamma^\mu p_\mu \psi(p) = 0 \)

As \(\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) & \(\gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \) \(\Rightarrow \)

\[\Rightarrow \gamma^\mu p_\mu = \begin{pmatrix} 0 & p_0 - \vec{p} \cdot \vec{\sigma} \\ p_0 + \vec{p} \cdot \vec{\sigma} & 0 \end{pmatrix} \] \(\Rightarrow \) Dirac equation becomes:

\[\begin{pmatrix} 0 & p_0 - \vec{p} \cdot \vec{\sigma} \\ p_0 + \vec{p} \cdot \vec{\sigma} & 0 \end{pmatrix} \begin{pmatrix} \chi_L \\ \chi_R \end{pmatrix} = 0 \]

(Def.) Helicity operator \(\h = \frac{\vec{p} \cdot \vec{\sigma}}{1^p} \) \(\Rightarrow \) for spin-\(\frac{1}{2} \) particles have \(\vec{s} = \frac{1}{2} \vec{\sigma} \) \(\Rightarrow \) \(\h = \frac{1}{21^p} \vec{p} \cdot \vec{\sigma} \).

Physical meaning: projection of spin on \(\vec{p} \) direction.

We get \((p_0 - \vec{p} \cdot \vec{\sigma}) \chi_R = 0 \)

\[(p_0 + \vec{p} \cdot \vec{\sigma}) \chi_L = 0 \]

Hence, as \(|1^p| = p_0 \) we get \(\h \chi_R = +\frac{1}{2} \)

\(\h \chi_L = -\frac{1}{2} \)
\[\Rightarrow \chi_\text{R} \text{ has helicity } +1 \]

\[\chi_\text{L} = 1 - 1 \]

\[\Rightarrow \chi_\text{R} \text{ is called right-handed as } \]

\[\begin{array}{c}
\vec{s} \\
\rightarrow
\end{array} \rightarrow \vec{p} \]

the spin is \(\perp \) to \(\vec{p} \). (hence \(h = +\frac{1}{2} \))

\[\Rightarrow \chi_\text{L} \text{ is called left-handed as } \]

\[\begin{array}{c}
\vec{s} \\
\leftarrow
\end{array} \rightarrow \vec{p} \]

the spin is \(\perp \) to \(\vec{p} \). (hence \(h = -\frac{1}{2} \)).
Poincare Group

Add space-time translations: \(x^\mu \to x'^\mu = x^\mu + a^\mu \)

Def. Poincare group is a group of Lorentz transformations \(\Lambda^\mu_\nu \) and translations \(a^\mu \):

\[
\Lambda^\mu_\nu x^\nu + a^\mu
\]

\(\Lambda^\mu_\nu \) = 6 parameters (boosts & rotations)

\(a^\mu \) = 4 parameters

Total = 10 parameters.

Generators:

\[
\begin{align*}
P_{\mu} &= i \partial_\mu \\
J_{\mu\nu} &= i \left[x_\mu \partial_\nu - x_\nu \partial_\mu \right] + \delta_{\mu\nu}
\end{align*}
\]

\(P_\mu = i \partial_\mu \) \(P_\mu \) = generator of translations.

\(P_0 = i \partial_0 \) \(P_0 = i \partial_0 \) \(P^\mu = i \partial^\mu = -i \partial_\mu = -i \nabla_\mu \)

\(\rho = -i \nabla \) n 3-momentum operator

Poincare algebra:

\[
\begin{align*}
[P_\mu, P_\nu] &= 0 \\
[P_\mu, J_{\rho\sigma}] &= i \left(g_{\mu\rho} P_\sigma - g_{\mu\sigma} P_\rho \right) \\
[J_{\mu\nu}, J_{\rho\sigma}] &= \text{same as before}
\end{align*}
\]
Operator $P_{\mu} P^\mu$ commutes with everything

\Rightarrow Casimir operator.

Def. Pauli-Lubanski vector $\omega^\mu = \frac{i}{2} \varepsilon^{\mu \nu \rho \sigma} P_{\nu} P_{\rho}$

\Rightarrow can show that $\omega \cdot \omega = -\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} \varepsilon_{\nu \rho \sigma} = \Lambda (\text{tr} \, \omega \cdot \omega)$. (trace of particle $w_0 = -m \, \hat{s}$)

$\omega \cdot \omega$ is another Casimir operator.

Representations are:

1. $P_{\mu} P^\mu = m^2 > 0 \Rightarrow \omega_{\mu} \omega^\mu = -m^2 s (s+1)$

 $s = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$

2. $P_{\mu} P^\mu = 0 \Rightarrow \omega_{\mu} \omega^\mu = 0$, $\omega_{\mu} P^\mu = 0$ (always)

 $\Rightarrow \omega \cdot \omega = h P^\mu \Rightarrow h = 0, \frac{1}{2}, 1, \ldots$ a helicity.

 In general helicity $h = \pm s$, s is spin, discretized.

 (e.g. photon has 2 polarizations corresponding to $h = \pm 1$, neutrino has $h = \pm 1, \ldots$)

3. $P_{\mu} P^\mu = 0$ but s in continuous. Possible, but not realized in nature.