Last time: defined color of quarks.

Write out the QCD (Quantum Chromodynamics) Lagrangian:

$$L_{QCD} = g^a f (i \gamma^\mu (\partial - \mathbf{m}_f) q^a_f - \frac{1}{4} F_{\mu
u} F^{\mu
u}$$

$$+ g \frac{g}{f} \mathbf{F}^a \mathbf{T}_i \mathbf{A}_\mu^i (T^c_i)_{ba} q^a_f$$

with T^c_i the generators of $SU(3)$, A^i_μ gluon fields $\mathbf{i} = 1, \ldots, 8$.

Elements of Group Theory (cont'd)

We defined a group G: (i) $f \cdot g = h \in G$, (ii) $f(g h) = (f g) h$

(iii) $f e = e f = f$. (iv) f^{-1}.

- Abelian: $f g = g f$, non-Abelian $[f g] \neq 0$.

$U(N)$: $N \times N$ unitary matrices \rightarrow unitary group

$SU(N)$: $-1 \rightarrow \Phi$ det $U = 1$. \rightarrow special -1-

- Representation: $f \rightarrow D(f)$:

 (i) $D(e) = 1$

 (ii) $D(g_1, g_2) = D(g_1) D(g_2)$

 - D matrices \rightarrow dim. of representation is their size.
Take a group \(\mathbb{Z}_4 \): it has \(\{ e, g_1, g_2, g_3 \} \).

Our example \(\{ 1, e^{i \pi/2}, e^{i \pi}, e^{i 3\pi/2} \} = \{ D(e), D(g_1), D(g_2), D(g_3) \} \) is one of the many possible representations of \(\mathbb{Z}_4 \).

Def. Dimension of representation is the dimension of the space of \(D \)-matrices.

Def. Representation is called reducible if there is a matrix \(M \) such that

\[
M D(g) M^{-1} = \begin{bmatrix}
D_1(g) & 0 \\
0 & D_2(g)
\end{bmatrix} \quad \text{for all } g \in G.
\]

\(\Rightarrow D = D_1 \oplus D_2 \oplus \ldots \)

A representation is called irreducible if no such matrix \(M \) exists.

Def. For two groups \(G = \{ g_1, g_2, \ldots \} \), \(H = \{ h_1, h_2, \ldots \} \) define direct-product group \(G \times H = \{ (g, h) \} \) such that \(g_1 h_1 \cdot g_2 h_2 = g_1 g_2 \cdot h_1 h_2 \).

Lie Groups

Imagine a group \(G \) with elements smoothly dependent on a continuous set of parameters \(\xi_i \), \(i = 1, \ldots, N \) : \(g(\xi_i) \in G \).
Assume that \(g(x = 0) = e \) (the identity element).

For a representation of the group:

\[D(x = 0) = 1. \]

Taylor expand \(D(x) \) near 0:

\[D(s x) = 1 + i s x \cdot \vec{X} + \ldots = 1 + i \sum \vec{s x} \cdot \vec{X} \]

(summation over repeating indices assumed)

\(\vec{x} \) are called **generators** of the group.

\[D(x) = D(s x) D(s x) \ldots D(s x) = \lim_{k \to \infty} \left(1 + i \sum \vec{s x} \cdot \vec{X} \right)^k = \lim_{k \to \infty} \left(1 + i \frac{\vec{s x} \cdot \vec{X}}{k} \right)^k = e^{i \vec{s x} \cdot \vec{X}}. \]

A group with elements depending smoothly on continuous set of parameters \(\vec{x}, i = 1, \ldots, n \), with generators \(\vec{X} \) is called a **Lie group**.

\[D(\vec{x}) = e^{i \vec{x} \cdot \vec{X}} \] as \(D \) can be a matrix.

\(\vec{X} \) can be a matrix; therefore in general \([\vec{X}_i, \vec{X}_j] \) does not have to be 0.
\[D(\hat{x}) D(\hat{\beta}) = e^{i \hat{x} \cdot \hat{x}} e^{i \hat{\beta} \cdot \hat{x}} = e \]

is also a group element \(\Rightarrow e^{i \hat{x} \cdot \hat{x}} e^{i \hat{\beta} \cdot \hat{x}} = e \)

\(\Rightarrow \) can show that for this to work we need

\[[X_a, X_b] = i f_{abc} X_c \]

Lie algebra

\(f_{abc} \) structure constants of the group

\(f_{abc} = - f_{bac} \).

\(f_{abc} \) are real for unitary representations (for hermitean \(X_a \)).

Example

Take the group \(SU(2) \): unitary \(2 \times 2 \) matrices with \(\det = +1 \) \((UU^* = U^*U = 1, \det U = 1)\).

(Defining representation)

Using Pauli matrices we can define a representation of \(SU(2) \):

\[\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

\(\Rightarrow D(\hat{\sigma}) = e^{i \frac{\hat{\sigma} \cdot \hat{\alpha}}{2}} \)

\(\hat{\alpha} = (\alpha_1, \alpha_2, \alpha_3) \) \(\alpha \)-vector.

Rotations around \(\frac{\hat{\alpha}}{|\alpha|} \) axis by angle \(|\alpha| \).
\[\sigma_i^+ = \overline{\sigma_i} \quad \text{(hermitean)} \implies \text{any } 2 \times 2 \]

unitary matrix with \(\det = 1 \) can be represented as:

\[e^{i \frac{\sigma_i \cdot \sigma_j}{2}} \]

Check:

\[U U^+ = e^{i \frac{\sigma_i \cdot \sigma_j}{2}} e^{-i \frac{\sigma_i \cdot \sigma_j}{2}} = 1 \]

\[\det U = \det e^{i \frac{\sigma_i \cdot \sigma_j}{2}} = \left| \det e^{A} \right| = e^{\text{tr} A} = 1 \]

as \(\text{tr} \, \sigma_i = 0 \).

Thus there are \((2^2 - 1) = 3\) different \(n \times n \) traceless hermitean matrices \(\Rightarrow \{ \sigma_i \} \) use up all possibilities.

Generators:

\[J_i = \frac{\sigma_i}{2} \implies D(2) = e^{i \frac{\sigma_i \cdot \sigma_j}{2}} \]

\(\Rightarrow \text{SU}(2) \) is a Lie group.

We know that

\[[\sigma_i, \sigma_j] = 2i \epsilon_{ijk} \sigma_k \]

\(\Rightarrow \) generators of \(\text{SU}(2) \) form a Lie algebra with structure constants \(\epsilon_{ijk} \)

\[\epsilon_{ijk} : \text{totally anti-symmetric Levi-Civita symbol}, \quad \epsilon_{123} = 1, \quad \epsilon_{ij2} = -\epsilon_{j2i} = \epsilon_{j2i} \ldots \]

\[\epsilon_{112} = 0 \ldots \]
Another example: SU(3): \(3 \times 3\) unitary matrices with \(\det = +1\)

Define Gell-Mann matrices:

\[
\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_2 = \begin{pmatrix} 0 & i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad (\text{cf. Pauli matrices})
\]

\[
\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},
\]

\[
\lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ i & 0 & 0 \end{pmatrix}, \quad \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.
\]

Normalization convention: \(\text{tr} [\lambda_i \lambda_j] = 2 \delta_{ij}\)

There are \(3^2 - 1 = 8\) +traceless hermitian matrices

\(\Rightarrow\) these should work.

Generators of SU(3): \(T^a = \frac{\lambda^a}{2}\)

\[
\Rightarrow [T^a, T^b] = i f^{abc} T^c, \quad \text{with structure constants } f^{abc}, \text{ which are anti-symmetric under the interchange of any two indices.}
\]

\(\Rightarrow SU(3)\) is a Lie group with the generator algebra given above.
\[
\begin{array}{cccc}
a	b	c	f_{abc} \\
1	2	3	1 \\
1	4	7	\frac{1}{2} \\
1	5	6	-\frac{1}{2} \\
2	4	6	\frac{1}{2} \\
2	5	7	\frac{1}{2} \\
3	4	5	\frac{1}{2} \\
3	6	2	-\frac{1}{2} \\
4	5	8	\sqrt{3}/2 \\
6	7	8	\sqrt{3}/2 \\
\end{array}
\]

\[
f_{112} = 0 \ldots
\]

...all other \(f_{abc} \)'s can be obtained from this table.

Casimir operator commutes with all generators:

\[
\frac{r^2}{T} = T_1^2 + T_2^2 + \ldots + T_n^2 = \frac{n^2 - 1}{2n}
\]

\(\Rightarrow \) for \(\text{su}(2) \) it is \(\frac{3}{4} \)

for \(\text{su}(3) \) it is \(\frac{4}{3} \).

\[
D(\mathbf{A}) = e^{i \mathbf{A} \cdot \mathbf{T}}, \text{ with } \mathbf{A} = (A_1, A_2, \ldots, A_8)
\]

an 8-component vector.

Jacobi Identity and the Adjoint Representation

\(\Rightarrow \) go back to some general Lie group with the generators \(X_a \) obeying some Lie algebra\n
\[
[X_a, X_b] = i f_{abc} X_c
\]

One can then easily prove **Jacobi identity**.
\[[X_a, [X_b, X_c]] + [X_b, [X_c, X_a]] + [X_c, [X_a, X_b]] = 0. \]

(prove this by using definitions of commutators)

\(\Rightarrow \) plug in the commutator of Lie algebra to write

\[f_{bcd} f_{ade} + f_{abd} f_{cde} + f_{cad} f_{bde} = 0 \]

these relations are obeyed by structure constants of any Lie group, e.g. \(SU(n) \).

Define\(\) The generators in the adjoint representation by \((t^a)_{bc} = -i f_{abc} \) \(\Rightarrow \) the above relation gives

\[[t^a, t^b] = i f_{abc} t^c. \]

\(\Rightarrow \) they obey the Lie algebra too!

Def. \(D(A) = e^{i A^a t^a} \) gives the adjoint representation of Lie group.
Consider representation of \(SU(n) \) in terms of \(n \times n \) unitary matrices \(U \) \((UU^+=1) \) with \(\det U = \pm 1 \). Matrices \(U \) can be thought of as linear operators acting on the \(n \)-dim vectors \(\alpha \in C^n \):

\[
\alpha_i \mapsto \alpha'_i = U_{ij} \alpha_j.
\]

Def. A **scalar product** \(\alpha_i^* b_c = \alpha \cdot b \) is invariant under \(SU(n) \) transformations:

\[
a_i^* b_c \rightarrow a'_i^* b'_c = U_{ij}^* a_j^* U_{ic} b_c = a_j^* U_{ij} U_{ic} b_c = a_j^* \underbrace{U_{ij} U_{ic}}_{= \delta_{jc}} b_c = a_j^* b_j = a_i^* b_c.
\]

Def. Introduce **upper indices**: \(a_i^* = a_i \), \(U_{ij} = U_{ij} \), \(U_{ji} = (U^*)_{ji} \):

\[
\Rightarrow \quad a_i \rightarrow a_i^* = U_{ij} a_j.
\]

\[
a_i \rightarrow a_i^* = U_{ij} a_j
\]

\[
\Rightarrow \text{ scalar product is } a_i^* b_c = \alpha \cdot b
\]

Unitarity \(U_{ik} U_{kj}^* = U_{ki}^* U_{kj} = U_{ki} U_{ji}^* = \delta_{ij} \equiv \delta_{ij} \).
Def. a_i's form a basis for fundamental (defining) representation of $SU(n)$, denoted \mathfrak{h}.

a_i's form a basis for conjugate representation $\overline{\mathfrak{h}}$.

$e^{a_{i_1} \cdots a_{i_p}} = U_{i_1}^{j_1} \cdots U_{i_p}^{j_p} U_{j_1}^{k_1} \cdots U_{j_p}^{k_p} a_{k_1} \cdots a_{k_p}$

e.g. S^{ij} is invariant, so is Levi-Civita symbol $\epsilon^{i_1 \cdots i_n}$.

\Rightarrow in general tensors form reducible representations of $SU(n)$.

\Rightarrow to reduce them to irreducible representations, note that permutation operator commutes with all U's: $P_{12} a^{i_1 \cdots i_p} = a^{j_1 \cdots j_p}$.

$\Rightarrow P_{12} a^{i_1 \cdots i_p} = P_{12} U_i^k U_{j_1}^{i_1} U_{j_2}^{i_2} a^{k_1 \cdots k_p} = U_i^k U_{j_1}^{i_1} U_{j_2}^{i_2} P_{12} a^{k_1 \cdots k_p}$

\Rightarrow organize all tensors by eigenstates of P_{12}: they could be symmetric or anti-symmetric.
\[a^i_d : \delta^{ij}_{\hat{d}} = \frac{1}{2} (a^i_d + a^j_{\hat{d}}), \quad A^i_d = \frac{1}{2} (a^i_d - a^j_{\hat{d}}) \]

\[\Rightarrow p_{12} \delta^{ij}_{\hat{d}} = \delta^{ij}_{\hat{d}}, \quad p_{12} A^i_d = -A^i_d \]

What is this good for?

Take a product of two representations:

\[a^i_d b^j = \frac{1}{2} (a^i_d b^j + a^j_{\hat{d}} b^i) + \frac{1}{2} (a^i_d b^j - a^j_{\hat{d}} b^i) \]

Take SU(3) for example: \(a^i_d \) is 3, \(a^j_{\hat{d}} b^i \) is 3 \(\otimes \) 3.

\[\frac{1}{2} (a^i_d b^j + a^j_{\hat{d}} b^i) \text{ has 6 indep. components} \Rightarrow \text{decide which a basis for representation 6.} \]

\[\frac{1}{2} (a^i_d b^j - a^j_{\hat{d}} b^i) \text{ has 3 indep. components} \]

\[\frac{1}{2} \delta^{ij}_{\hat{d}} = \sum_{k} a^k_d b^k \]

\[\text{L} \Rightarrow \text{it is 3} \]

\[\Rightarrow \text{we showed that 3} \otimes \text{3} = 6 \oplus 3 \]

\[a^i_d b^j = \left(a^i_d b^j - \frac{1}{3} \delta^{ij}_{\hat{d}} a^k b_k\right) + \frac{i}{3} \delta^{ij}_{\hat{d}} a^k b_k \]

+ traceless 3 \times 3 matrix \quad 1 (\text{a singlet}) \]

\[\Rightarrow 8 \text{ d.o.f. freedom} \Rightarrow a_{\text{adjoint representation}} \]

\[\Rightarrow 3 \otimes 3 = 8 \oplus 1 \]