Particle Production in High Energy

Hadronic Collisions.

Collinear Factorization

When we considered DIS above, we have factorized EM & QCD parts of the diagram:

\[F_2(x, Q^2) = \sum_f e_f^2 x q_f^T(x) \]

Thus, this is an example of collinear factorization.

In general, one writes:

\[F_2(x, Q^2) = \sum_{f, \bar{f}, g} \int_0^1 d\xi \ C_2^f(\frac{x}{\xi}, Q^2, M^2) \rho_f^T(\frac{\xi}{\Lambda^2}) + o(\frac{m^2}{Q^2}) \]

\(C_2 \) coefficient for

\(\rho_f^T = \{ q_f^T, g_f^T, g \} \)

- Momentum fraction of the parton in \(p_f^T \)
\(\mu^2 \) is called factorization scale.

Note: \(C_2^f \) is perturbatively calculable, \(p^f \) is not (though one has DGLAP for \(p^f \)).

\(\Lambda^2 \lesssim \mu^2 \lesssim Q^2 \Rightarrow \) but \(F_2 \) does not depend on \(\mu^2 \), it is arbitrary \(\Rightarrow \mu^2 \frac{d}{d\mu^2} F_2 (x, Q^2) = 0 \)

Write \(F_2 = (C_2^f \otimes p^f) \)

\(\Rightarrow \mu^2 \frac{d}{d\mu^2} F_2 = 0 = (\mu^2 \frac{d}{d\mu^2} C_2^f) \otimes p^f + C_2^f \otimes \mu^2 \frac{d}{d\mu^2} p^f \)

\(\Rightarrow \) what happens (separation of variables, \(C_2 \) depends on \(Q^2 \), only \(p^f \) depends on \(\Lambda^2 \)):

\[\mu^2 \frac{d}{d\mu^2} p^f = \delta (d_3) \otimes p^f \sim \text{DGLAP evolution} \]

\[\mu^2 \frac{d}{d\mu^2} C_2 = -\delta (d_3) \otimes C_2^f \]

\(\Rightarrow \mu^2 \frac{d}{d\mu^2} F_2 = -\delta \otimes C_2^f \otimes p^f + C_2^f \otimes \delta \otimes p^f = 0. \)

as desired.

\(\Rightarrow \) can "place" corrections into PDF or coefficient function.
Collinear factorization in DIS is a theorem which can be proven \(\Rightarrow \) must be right! (at large - \(\alpha_s \) only!)

\[C_i^f = S \left(\frac{x}{\bar{x}} - 1 \right) e_i^2 \text{, } f = \text{quark only} \]

\[\Rightarrow F_2(x, Q^2) = \sum_f \int_0^1 d\bar{x} \ S \left(\frac{x}{\bar{x}} - 1 \right) e_f^2 \ x \bar{x} f(x) \]

\[= \sum_f e_f^2 \ x \bar{x} f(x) \text{ as expected!} \]

Jet Production in Hadronic Collisions.

Collinear factorization also applies to hadron-hadron collisions. Consider quark production:

A collision happens very fast on proton's time scale \(\Rightarrow \) factorization.