\[T^{\mu \nu} = \left(\begin{array}{cc} \text{energy density} & \text{momentum density} \\ \text{momentum density} & -\text{Maxwell's stress tensor} \end{array} \right) \]

\[\partial_{\mu} T^{\mu \nu} = 0 \quad \text{(energy & momentum conservation)} \]

Radiation by Moving Charges

Imagine a charge moving along some arbitrary trajectory. It gives rise to the current \(J^\mu \).

To find radiation by this charge, all we have to find is \(A^\mu \) from Maxwell equations

\[\partial_\mu F^{\mu \nu} = \frac{4\pi}{c} J^\nu \]

Let's work in \(\partial_\mu A^\mu = 0 \) gauge \(\Rightarrow \Box A^\mu = \frac{4\pi}{c} J^\mu \).
First we need to find the Green function of the operator \Box:

$$\Box G(x, x') = \delta^4(x - x')$$

where x, x' are 4-vectors x_μ, x'_μ.

The standard technique is a Fourier transform:

look for $G(x, x') = \int \frac{d^4k}{(2\pi)^4} e^{-ik(x-x')} \tilde{G}(k)$

(use translational invariance to argue that $G(x, x') = G(x-x')$).

Rewriting the eqn. for G as $\Box G(x) = \delta^4(x)$

and recalling that $\delta^4(x) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot x}$

(here $k \cdot x = k_\mu x^\mu$) we get

$$-k^2 \tilde{G} = 1 \Rightarrow \tilde{G} = -\frac{i}{k^2}$$

$$\Rightarrow G(x) = -\int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot x} \frac{1}{k^2}$$

However, this is not the end of the story: write

$$G(x) = -\frac{1}{(2\pi)^4} \int d^3k \ e^{i k \cdot x_0} \int_{-\infty}^{\infty} dk_0 \ \frac{e^{-ik_0 x_0}}{k_0^2 - k^2}.$$
The k_0-integration has poles at $k_0 = \pm |k|$ just on the contour!

We have a freedom of moving the contour to go around the poles in any way we'd like.

We'll use two contour paths:

and

Other paths like

are important in quantum field theory, but not in classical physics.

Here's our contours, which we label r & a for retarded & advanced.

First let's work out contour r:

$$\int_{-\infty}^{\infty} \, dk_0 \, \frac{e^{-ik_0 x_0}}{k_0^2 - k^2} = \begin{cases} 0, & \text{if } x_0 < 0 \text{ close in upper half-plane} \\ \pm i 2\pi, & \text{if } x_0 > 0 \text{ close in lower half-plane} \end{cases}$$

$$= \Theta(x_0) \cdot (-2\pi i) \left\{ \frac{1}{2|k|} e^{-i|k|x_0} - \frac{1}{2|k|} e^{i|k|x_0} \right\} = \Theta(x_0) \cdot (-2\pi i) \frac{1}{|k|^2} \left(-i \right) \sin(|k|x_0) = -2\pi \Theta(x_0) \frac{1}{|k|} \sin(|k|x_0).$$
The corresponding retarded Green function is

\[G_{r}(x) = \frac{1}{(2\pi)^{4}} (-2\pi) \Theta(x_{0}) \int d^{3}k \ e^{i\frac{k^{2} - x^{2}}{2}} \frac{\sin(|k|x_{0})}{\frac{1}{2}k} = \]

\[\frac{1}{(2\pi)^{3}} \Theta(x_{0}) \int_{0}^{\infty} dk \cdot k^{2} \cdot \int_{0}^{2\pi} d\phi \ e^{i\frac{k|x_{0}|\cos\theta}{k}} \frac{\sin(k|x_{0}|)}{k} = \]

\[\frac{1}{2(2\pi)^{2}} \Theta(x_{0}) \int_{0}^{\infty} dk \cdot \sin(k|x_{0}|) \cdot 2 \cdot \sin(k|x|) = \]

\[\frac{1}{2(2\pi)^{2}} \Theta(x_{0}) \int_{0}^{\infty} dk \ (e^{ikx_{0}} - e^{-ikx_{0}})(e^{ik|x|} - e^{-ik|x|}) = \]

\[\frac{1}{2(2\pi)^{2}} \Theta(x_{0}) \int_{0}^{\infty} dk \ \delta(x_{0} + k|x|) - \delta(x_{0} - k|x|) \]

\[\frac{1}{2(2\pi)^{2}} \Theta(x_{0}) \left\{ \int_{-\infty}^{\infty} dk \ e^{ik(x_{0} + 1|x|)} - \int_{-\infty}^{0} dk \ e^{-ik(x_{0} - 1|x|)} \right\} = \frac{1}{2(2\pi)^{2}} \Theta(x_{0}) \left\{ \delta(x_{0} + 1|x|) - \delta(x_{0} - 1|x|) \right\} \]

\[\frac{1}{(2\pi)^{4}} \Theta(x_{0}) \delta(x_{0} - 1|x|) = \frac{1}{4\pi} \Theta(x_{0}) \delta(x_{0} - 1|x|) \]

\[G_{r}(x) = \frac{1}{4\pi} \Theta(x_{0}) \delta(x_{0} - 1|x|) \]

Not obviously relativistically invariant. Noting that

\[\delta(x^{2}) = \delta(x_{0}^{2} - 1|x|^{2}) = \frac{1}{2|x|} \left[\delta(x_{0} - 1|x|) + \delta(x_{0} + 1|x|) \right] \]

write

\[G_{r}(x) = \frac{1}{2\pi} \Theta(x_{0}) \delta(x^{2}) \]
\[G_r(x-x') = \frac{1}{2\pi} \Theta(x_0 - x'_0) \delta((x-x')^2) \]

\[(x-x')^2 \text{ is manifestly invariant} \]

\[x_0 - x'_0 = c(t - t') \text{ & under boost} \]

\[\Delta t = \delta \Delta \xi \text{ with } \delta > 0 \Rightarrow \Theta(\Delta t) = \Theta(\delta \xi) \]

\[\Rightarrow \text{also invariant!} \]

The advanced Green function can be obtained using contour a, which yields:

\[G_a(x-x') = \frac{1}{2\pi} \Theta(x'_0 - x_0) \delta \left[(x-x')^2 \right] \]

Solutions to Maxwell equations are:

\[A^\mu(x) = A^\mu_{\text{in}}(x) + \frac{\mu_0}{c} \int d^4x' \, G_r(x-x') \, J^\mu(x') \]

If we are given initial incoming field \(A^\mu_{\text{in}} \),

\[A^\mu(x) = A^\mu_{\text{out}}(x) + \frac{\mu_0}{c} \int d^4x' \, G_a(x-x') \, J^\mu(x') \]

If we have the outgoing field \(A^\mu_{\text{out}} \).

For a point charge moving along \(\vec{r}(t) \):

\[\rho(\vec{x}, t) = e \, S(\vec{x} - \vec{r}(t)) \quad \vec{J}(\vec{x}, t) = e \, \vec{V}(t) \, S(\vec{x} - \vec{r}(t)) \]

where \(\vec{V}(t) = \frac{d\vec{r}(t)}{dt} \).
Hence, the field of a point charge, in the absence of a medium, is

\[
\Phi(x, t) = \frac{4\pi}{c} \int d^3x' \frac{1}{4\pi} \frac{\Theta(x_0 - x_{0'})}{|x - x'||}.
\]

\[S(x_0 - x_{0'} - x') \in S(x' - \vec{r}(t')) = \]

\[= \int dx_{0'} \frac{\Theta(x_0 - x_{0'})}{|x - x'|} \in S(x_0 - x_{0'} - x') \in S(x - \vec{r}(t')) \]

\[= \int dt' \frac{\mathcal{E}}{|x - \vec{r}(t')|} \in \mathcal{S}(t - t' - \frac{1}{c}|x - \vec{r}(t')|) \]

\[
\Rightarrow t' \text{ has to be determined from the implicit equation: (label } t' = t_{\text{ret}})
\]

\[
t_{\text{ret}} = t - \frac{1}{c} |x - \vec{r}(t_{\text{ret}})|
\]

To integrate, denote \(F(t, t') = t - t' - \frac{1}{c} |x - \vec{r}(t')| \)

\[
\Rightarrow \Phi(x, t) = \int_{-\infty}^{\infty} dt' \frac{\mathcal{E}}{|x - \vec{r}(t')|} \in \mathcal{S}(F(t, t')) =
\]

\[
= \frac{\mathcal{E}}{|x - \vec{r}(t_{\text{ret}})|} \left| \frac{1}{\partial F/\partial t'} \right|_{t' = t_{\text{ret}}}
\]
\[
\frac{\partial F}{\partial t'}\bigg|_{t'=t} = -1 + \frac{1}{c} \frac{(x - \vec{\nu}(t)) \cdot \vec{\nu} / \nu}{|x - \vec{\nu}(t)|}
\]

where \(\vec{\nu}(t) = \frac{d\vec{\nu}(t)}{dt} \)

Defining \(\hat{\nu} = \frac{x - \vec{\nu}(t)}{|x - \vec{\nu}(t)|} \)

and \(\hat{\beta}(t) = \frac{\vec{\nu}(t)}{c} \)

get
\[
\frac{\partial F}{\partial t'}\bigg|_{t'=t} = -1 + \hat{\nu} \cdot \hat{\beta} \Rightarrow \left| \frac{\partial F}{\partial t'}\bigg|_{t'=t} \right| = 1 - \hat{\nu} \cdot \hat{\beta}
\]

as \(|\hat{\beta}| < 1\). \Rightarrow \Phi(x, t) = \left[\frac{e}{(1 - \hat{\nu} \cdot \hat{\beta}) R} \right]_{\text{rad}}

where \(R^{(r)} = |x - \vec{\nu}(t)| \) and the subscript of "rad" means that we need to evaluate everything at \(t = t_{\text{rad}} \).

Similarly \(\vec{A}(x, t) = \left[\frac{e \hat{\beta}}{(1 - \hat{\nu} \cdot \hat{\beta}) R} \right]_{\text{rad}} \).

These are Liénard-Wiechert potentials!

To find \(\vec{E} \) and \(\vec{B} \) need to use
\[
\vec{E} = -\nabla \Phi - \frac{i}{c} \frac{\partial \vec{A}}{\partial t}, \quad \vec{B} = \nabla \times \vec{A}.
\]