1. (10 pts) A wire of radius d carrying current I is rotated about its diameter with constant angular velocity ω. Calculate the time-averaged radiated power per unit solid angle far away from the wire in the small-loop approximation $kd \ll 1$. What is the total radiated power? (Hint: it’s the magnetic dipole moment radiation.)

2. (10 pts) Prove that the operator multiplying Y_{lm} on the left hand side of Eq. (9.99) in Jackson is equal to \vec{L}^2, with \vec{L} defined in Eq. (9.101) of Jackson.

3. (10 pts) Jackson Problem 10.1 (a,b)

4. (10 pts) Jackson Problem 10.4 (Hint: use dielectric function

\[\epsilon = \epsilon_r + \frac{i \sigma}{\omega \epsilon_0} \] (1)

in previously derived cross section. Absorption cross section can be calculated by using the definition of P_{abs} in terms of Poynting vector and employing Jackson’s Eq. (6.108) and Ohm’s law.)

5. (10 pts) Jackson Problem 10.11 (a,b), where Fresnel integrals are defined by

\[C(\xi) = \sqrt{\frac{2}{\pi}} \int_0^\xi \cos \eta^2 d\eta \] (2)

\[S(\xi) = \sqrt{\frac{2}{\pi}} \int_0^\xi \sin \eta^2 d\eta. \] (3)

In part (b) a numerical plot of $I(X)$ would suffice, though you may do what Jackson requires for a full credit as well. Finally, a hint:

\[\int_{-\infty}^{\infty} dy e^{iy^2} = \sqrt{\frac{\pi}{2}} (1 + i). \] (4)

Can you prove this?