MICROWAVE SPECTRUM AND SUBSTITUTIONAL STRUCTURE OF $\mathrm{CH}_{2} \mathrm{DF}^{*}$

WILLIAM W. CLARK and FRANK C. DE LUCIA
Department of Physics, Duke University, Durham, North Carolina 27706 (U.S.A.)

(Received 13 May 1975)

Abstract

Forty-two transitions of the microwave spectrum of $\mathrm{CH}_{2} \mathrm{DF}$ have been observed in the region between 75 and 450 GHz . The measurement of both a-type and b-type transitions makes possible the analysis of the spectrum and the accurate calculation of the rotational constants (in MHz): $\mathscr{A}=119675.0535 \pm 0.074, S=24043.4415 \pm 0.072$, $\mathscr{C}=22959.3732 \pm 0.072, \Delta_{\mathrm{J}}=0.049371 \pm 0.00011, \Delta_{\mathrm{JK}}=0.34268 \pm 0.0006, \Delta_{\mathrm{K}}=$ $1.3774 \pm 0.0035, \delta_{\mathrm{J}}=0.002329 \pm 0.000045, \delta_{\mathrm{K}}=0.0687 \pm 0.036$. These constants, in combination with the results of earlier work on the symmetric species, make possible a r_{s} structure calculation based entirely on high-accuracy microwave data. The structural parameters are $r_{\mathrm{CH}}=1.100 \mathrm{~A}, r_{\mathrm{CF}}=1.383 \mathrm{~A}$, and $\angle \mathrm{HCH}=110^{\circ} 37^{\prime}$.

INTRODUCTION

The methyl halides have been studied both in the IR and microwave spectral regions by a number of workers. However, the relatively high frequencies of the microwave transitions and the complications introduced in the IR spectrum by Coriolis interactions have resulted in substantially less work on methyl fluoride. diLauro and Mills [1] have calculated rotational constants for $\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CD}_{3} \mathrm{~F}$ from IR data and Riter and Eggars [2] have studied the vibrational structure of $\mathrm{CH}_{2} \mathrm{DF}$. The symmetric species of methyl fluoride have been studied in the microwave region by several workers [3, 4] and most recently by Winton and Gordy [5].

In this paper we report the results of our study of the nearly prolate symmetric top $\mathrm{CH}_{2} \mathrm{DF}$. Because the asymmetry of $\mathrm{CH}_{2} \mathrm{DF}$ results from a small rotation of the principal axis system of $\mathrm{CH}_{3} \mathrm{~F}$, weak b-type transitions were observed in addition to the strong a-type "symmetric-top" transitions. As a result $\Delta K_{-1}=1$ transitions can be measured and the value of the rotational constant calculated directly. The \mathscr{B} rotational constants of the symmetric species and the $\mathscr{A}, \mathscr{F}, \mathscr{C}$ of $\mathrm{CH}_{2} \mathrm{DF}$ make possible the calculation of the structural parameters of methyl fluoride. In addition, $\mathrm{CH}_{2} \mathrm{DF}$

[^0]represents a test of Watson's reduced centrifugal distortion Hamiltonian [6] in the limit of both large rotational constants and near symmetric-top symmetry ($\kappa=-0.978$).

EXPERIMENTAL PROCEDURE

Many of the transitions which are needed for this study fall in the millimeter and submillimeter region of the spectrum. In addition, the b-type transitions are weak due to the small component of the dipole moment along the b -axis, μ_{b}. We have previously discussed a sensitive, reliable spectrometer for use in the millimeter and submillimeter region of the microwave spectrum [7]. Briefly, it consists of a klystron-driven crystal harmonic generator, a one-meter quasi-free-space absorption cell, and an InSb photodetector which operates at 1.6 K . Although most of the transitions were strong enough to be observed on an oscilloscope screen, a few were measured on a chart recorder with a lock-in amplifier and a phase locked, slow sweep klystron [8].

The sample for this work was kindly supplied by Professor David F. Eggars of the University of Washington.

THEORY AND ANALYSIS

We have previously discussed the use of Watson's reduced centrifugal distortion Hamiltonian for the analysis of the microwave spectra of asymmetric molecules of the form $\mathrm{XY}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right.$, [9], etc.), $\mathrm{XYZ}(\mathrm{HDO}$ [10], etc.) and $\mathrm{XYZ}_{2}\left(\mathrm{ND}_{2} \mathrm{H}\right.$ [11], et.c.). For $\mathrm{CH}_{2} \mathrm{DF}$ the reduced Hamiltonian has the form

$$
\begin{aligned}
& \mathscr{H}=\mathscr{H}_{\mathrm{r}}+\mathscr{H}_{\mathrm{d}}^{(4)} \\
& \mathscr{H}_{\mathrm{r}}=\frac{1}{2}(\mathscr{H}+\mathscr{C}) P^{2}+\left[\mathscr{A}-\frac{1}{2}(\mathscr{B}+\mathscr{C})\right]\left[P_{z}^{2}-b_{\mathrm{p}} P^{2}\right] \\
& \mathscr{H}_{\mathrm{d}}^{(4)}=-\Delta_{\mathrm{J}} P^{4}-\Delta_{\mathrm{JK}} P^{2} P_{Z}^{2}-\Delta_{\mathrm{K}} P_{Z}^{4}-2 \delta_{\mathrm{J}} P^{2} P_{-}^{2}-\delta_{\mathrm{K}}\left[P_{z}^{2} P_{-}^{2}+P_{-}^{2} P_{z}^{2}\right]
\end{aligned}
$$

where $P^{2}=\left(P_{x}^{2}+P_{y}^{2}+P_{z}^{2}\right)$ is the total angular momentum, $P_{-}^{2}=\left(P_{x}^{2}-P_{y}^{2}\right)$, and $b_{p}=(\mathscr{C}-\mathscr{S}) /(2 \mathscr{G}-\mathscr{C})$ is Wang's asymmetry parameter for a near prolate top. The large centrifugal distortions of these light, hydrogen containing molecules are a severe test for a centrifugal distortion theory; particularly when the theory is tested to the accuracy of microwave measurements ($\approx 0.1 \mathrm{MHz}, 0.000003 \mathrm{~cm}^{-1}$). However, none of the light species which have been previously investigated approach the symmetric top limit closely, and it is in this limit that the transformation which results in the reduced Hamiltonian breaks down.

Because the fluorine and carbon nuclei are substantially heavier than the hydrogen nuclei, $\mathrm{CH}_{2} \mathrm{DF}$ is only slightly asymmetric. Of light molecules with similar symmetry, only $\mathrm{CH}_{2} \mathrm{O}$ [12] and $\mathrm{CH}_{2} \mathrm{~S}$ [13] have been analyzed by these methods. These molecules are not, however, stringent tests for the breakdown of Watson's transformation in the symmetric top limit because
only a-type transitons can be observed in XYZ_{2} molecules and the values of s and Δ_{K} are difficult to calculate accurately. On the other hand, \mathscr{A} and Δ_{K} are directly related to the $\Delta_{\mathrm{K}_{-1}}=1$ transitions allowed by the non-zero μ_{b} of $\mathrm{CH}_{2} \mathrm{DF}$.

Figure 1 shows the importance of these transitions for the accurate calculation of the energy levels and molecular constants of $\mathbf{C H}_{2} \mathbf{D F}$. If only the a-type transitions of a near prolate rotor are observed, then only the "symmetric top" constants $\mathscr{X}, \mathscr{C}, \Delta_{\mathrm{J}}$ and Δ_{JK} can be calculated with accuracy. In order to obtain accurate values for \mathscr{A} and Δ_{K}, the weak b-type transitions, which define the energy differences between different K_{-1} states, must be observed. Since these are by far the largest constants, any stringent test of distortion theory must be based on data which is sensitive to these constants.

Table 1 shows the 42 microwave transitions measured in this experiment and the transition frequencies calculated from the rotation-distortion constantc of Table 2. The calculation of these constants from the observed data has been discussed previously [14]. For Watson's theory to be satisfactory in the near symmetric top limit, it must meet the minimum requirement that the observed data fit the theory to within experimental uncertainty. The r.m.s. deviation between the calculated and observed transition frequencies is 0.074 MHz , which satisfies this condition. Another test for a satisfactory theory is that it predicts accurately unobserved transitions, particularly transitions that are not closely related to the original data set. Table 3 shows several observed transitions that are well beyond the J range included in the analysis and represent, in some cases, different types of transitions. Also shown in Table 3 are transition frequencies calculated from the constants of Table 2 and the corresponding uncertainties. Inspection of this table shows excellent agreement between prediction and observation.

Table 4 lists the ground state energy levels for $J \leqslant 9$ calculated from the molecular constants of Table 2. Since all energy levels can be directly

Fig. 1. Energy levels and observed transitions of $\mathrm{CH}_{2} \mathrm{DF}$. Verticle arrows indicate the strong a-type transitions and the angled arrows indicate the weaker b-type transitions.

TABLE 1
Microwave spectrum of $\mathbf{C H}_{2} \mathbf{D F}$ ($\mathbf{M H z)}$

Transition		Frequency		Obs.-calc.
Upper state	Lower state	Observed	Calculated	
a-Type				
2(0,2)	1(0,1)	93994.872	93994.895	-0.023
2(1, 2)	$1(1,1)$	92919.018	92918.960	0.058
2(1, 1)	1(1,0)	95086.487	95086.397	0.090
$3(0,3)$	$2(0,2)$	140966.530	140966.500	0.030
$3(1,3)$	2(1,2)	139369.908	139369.928	-0.020
3(1, 2)	$2(1,1)$	142620.694	142620.756	-0.062
$3(2,2)$	2(2, 1)	140995.003	140994.887	0.116
$3(2,1)$	2(2, 0)	141031.554	141031.499	0.055
$4(0,4)$	$3(0,3)$	187907.271	187907.132	0.139
4(1, 4)	$3(1,3)$	185810.754	185810.753	0.001
4(1,3)	3(1, 2)	190144.459	190144.443	0.016
$4(2,3)$	3(2,2)	187980.388	187980.562	-0.174
$4(2,2)$	$3(2,1)$	188072.017	188072.049	-0.032
$4(3,2)$	3(3,1)	187992.146	187992.082	0.064
$4(3,1)$	$3(3,0)$	187992.146	187992.371	$\bigcirc 0.225$
$5(0,5)$	$4(0,4)$	234806.509	234806.565	-0.056
$5(1,5)$	$4(1,4)$	232238.116	232238.168	-0.052
$5(1,4)$	$4(1,3)$	237653.866	237653.790	0.076
$6(0,6)$	$5(0,5)$	281654.754	281654.738	0.016
$6(1,6)$	$5(1,5)$	278649.055	278649.006	0.049
$6(1,5)$	$5(1,4)$	285145.060	285145.038	0.022
$6(2,5)$	$5(2,4)$	281916.770	281916.769	0.001
$6(2,4)$	$5(2,3)$	282236.265	282236.254	0.011
$6(5,2)$	$5(5,1)$		281894.136	-0.102
$6(5,1)$	$5(5,0)$	281894.034	281894.136	-0.102
7(0,7)	$6(0,6)$	328441.934	328441.893	0.041
$7(1,7)$	$6(1,6)$	325040.220	325040.222	-0.002
$7(1,6)$	6(1,5)	332614.337	332614.307	0.030
$7(6,2)$	$6(6,1)$	328804.422	328804.572	-0.150
$7(6,1)$	$6(6,0)$	328804.422	328804.572	-0.150
$8(0,8)$	$7(0,7)$	375158.694	375158.764	-0.070
$8(1,8)$	$7(1,7)$	371408.904	371408.913	-0.009
8(1, 7)	$7(1,6)$	380057.599	380057.577	0.022
$8(7,2)$	7(7, 1)	375680.627	375680.717	-0.090
$8(7,1)$	$7(7,0)$	375680.627	375680.717	-0.090
$9(0,9)$	$8(0,8)$	421796.865	421796.834	0.031
$9(1,9)$	8(1,8)	417752.321	417752.339	-0.018
$9(1,8)$	8(1,7)	427470.637	427470.658	-0.021
$9(8,2)$	$8(8,1)$	422517.372	422517.221	0.151
$9(8,1)$	$8(8,0)$	422517.372	422517.221	0.151
b-Type				
3(1,2)	3(0, 3)	99459.274	99459.230	0.044
$7(1,6)$	7(0,7)	112206.444	112206.480	-0.036

TABLE 1 (continued)

Transition		Frequency		Obs-calc.
Upper state	Lower state	Observed	Calculated	
b-Type				
7(0, 7)	6(1, 6)	243155.209	243155.212	-0.003
7(2,5)	7(1, 6)	274549.303	274549.327	-0.024
8(2, 6)	8(1, 7)	271042.504	271042.485	0.019
$8(4,4)$	9(3, 7)	249721.302	249721.360	-0.058
8(4,5)	$9(3,6)$	249676.812	249676.754	0.058

TABLE 2
Rotational constants of $\mathrm{CH}_{2} \mathrm{DF}(\mathrm{MHz})^{\text {a,b }}$
$\mathscr{A}=119675.0535 \pm 0.074 ; \mathscr{T}=24043.4415 \pm 0.072 ; \mathscr{C}=22959.3732 \pm 0.072$;
$\Delta_{J}=0.049371 \pm 0.00011 ; \Delta_{\mathrm{JK}}=0.34268 \pm 0.0006 ; \Delta_{\mathrm{K}}=1.3774 \pm 0.0035 ;$
$\delta_{J}=0.002329 \pm 0.000045 ; \delta_{K}=0.0687 \pm 0.036$
${ }^{\text {a }}$ Errors quoted are twice the statistical standard deviation.
bThe number of places quoted are required to reproduce the observed microwave lines. Because of the correlations between the constants this number can be larger than the number determined from the uncertainty in the constant.

TABLE 3

Theoretical predictions and observations of high J lines (MHz)

Upper state	Lower state	Predicted frequency (est. uncertainty)	Observed frequency	Obs- predicted
$12(1,11)$	$12(0,12)$	$144973.101(0.876)$	144973.151	0.050
$11(5,6)$	$12(4,9)$	$300716.039(0.502)$	300716.180	0.141
$11(5,7)$	$12(4,8)$	$360713.328(0.496)$	300713.579	0.251
$13(1,12)$	$13(1,13)$	$38087.300(1.942)$	98087.564	0.264
$15(1,14)$	$15(0,15)$	$175978.637(2.72)$	175978.960	0.323

${ }^{\text {a }}$ The calculated uncertainties repre: ent two standard deviations in the statistical analysis.
connected to the O_{0} level either by measured transitions or by transitions that can be predicted to within experimental accuracy and since the r.m.s. deviation of the fit is 0.074 MHz , the uncertainty of these energy levels should be $\leqslant 1 \mathrm{MHz}$.

STRUCTURE

It is difficult to calculate accurate structural parameters for the methyl halides because only the value of the \mathscr{S} rotational constant can be obtained

TABLE 4
Ground state energy levels of $\mathrm{CH}_{2} \mathrm{DF}\left(\mathrm{cm}^{-1}\right)$

Level	Energy	Level	Energy	Level	Energy
$1(0,1)$	1.56784	$5(5,1)$	103.67936	$8(2,7)$	69.25352
$1(1,1)$	4.75770	$5(5,0)$	103.67936	$8(2,6)$	69.31731
$1(1,0)$	4.79385	$6(0,6)$	32.90050	$8(3,6)$	85.30419
$2(0,2)$	4.70317	$6(1,6)$	35.74536	$8(3,5)$	85.30493
$2(1,2)$	7.85714	$6(1,5)$	36.50413	$8(4,5)$	107.74268
$2(1,1)$	7.96559	$6(2,5)$	45.74893	$8(4,4)$	107.74268
$2(2,1)$	17.53449	$6(2,4)$	45.77026	$8.5,4)$	136.58838
$2(2,0)$	17.53480	$6(3,4)$	61.78932	$8(5,3)$	136.58838
$3(0,3)$	9.40531	$6(3,3)$	61.78946	$8(6,3)$	171.83528
$3(1,3)$	12.50602	$6(4,3)$	84.23246	$8(6,2)$	171.83528
$3(1,2)$	12.72291	$6(4,2)$	84.23246	$8(7,2)$	213.47690
$3(2,2)$	22.23758	$6(5,2)$	113.08234	$8(7,1)$	213.47690
$3(2,1)$	22.23910	$6(5,1)$	113.08234	$8(8,1)$	261.50589
$3(3,1)$	38.27413	$6(6,1)$	148.33360	$8(8,9)$	261.50589
$3(3,0)$	38.27413	$6(6,0)$	148.33360	$9(0,9)$	70.43972
$4(0,4)$	15.67321	$7(0,7)$	43.85615	$9(1,9)$	72.91112
$4(1,4)$	18.70400	$7(1,7)$	46.58754	$9(1,8)$	74.53519
$4(1,3)$	19.06544	$7(1,6)$	47.59895	$9(2,8)$	83.35304
$4(2,3)$	28.50793	$7(2,6)$	56.71858	$9(2,7)$	83.45299
$4(2,2)$	28.51251	$7(2,5)$	56.75693	$9(3,7)$	99.41287
$4(3,2)$	44.54487	$7(3,5)$	72.76298	$9(3,6)$	99.41436
$4(3,1)$	44.54488	$7(3,4)$	72.76332	$9(4,6)$	121.84812
$4(4,1)$	66.99072	$7(4,4)$	95.20407	$9(4,5)$	121.84813
$4(4,0)$	66.99072	$7(4,3)$	95.20407	$9(5,5)$	150.69104
$5(0,5)$	23.50552	$7(5,3)$	124.05207	$9(5,4)$	150.69104
$5(1,5)$	26.45063	$7(5,2)$	124.05207	$9(6,4)$	185.93518
$5(1,4)$	26.99272	$7(6,2)$	159.30133	$9(6,3)$	185.93518
$5(2,4)$	36.34520	$7(6,1)$	159.30133	$9(7,3)$	227.57383
$5(2,3)$	36.35588	$7(7,1)$	200.94554	$9(7,2)$	227.57383
$5(3,3)$	52.38328	$7(7,0)$	200.94554	$9(8,2)$	275.59955
$5(3,2)$	52.38332	$8(0,8)$	56.37009	$9(8,1)$	275.59955
$5(4,2)$	74.82797	$8(1,8)$	58.97640	$9(9,1)$	330.00395
$5(4,1)$	74.82797	$8(1,7)$	60.27630	$9(9,0)$	330.00395

TABLE 5
Methyl fluoride structures

Structure	r_{CH}	r_{CF}	HCH
r_{s}	1.100 A	1.383	$110^{\circ} 37^{\prime}$
$r_{\mathrm{e}^{\circ}}$	1.095 A	1.382	$110^{\circ} 27^{\prime}$

${ }^{\text {a From ref. }} 18$.
directly from the spectra of $\mathrm{CH}_{3} \mathrm{X}$ species. In order to calculate the structure of the methyl group, knowledge of the \mathscr{A} rotational constant, which can be calculated from the spectra of $\mathrm{CH}_{2} \mathrm{DX}$ species, is also required. Although there exists considerable literature on the structural calculations of $\mathbf{C H}_{3} \mathbf{I}$, $\mathrm{CH}_{3} \mathrm{Br}$, and $\mathrm{CH}_{3} \mathrm{Cl}$, the complications which result from Coriolis interactions in the IR spectrum and the relatively high frequencies of the microwave transitions have resulted in substantially less work on $\mathrm{CH}_{3} \mathrm{~F}$.

Ideally, an equilibrium structure r_{e} based upon precision microwave data is desired. However, the difficulty associated with the measurement and analysis of the large number of excited states required for this calculation led Costain [15] to propose calculation of a substitution structure r_{s}. For most purposes, this structure has proven to be more satisfactory than the various ground state structures r_{0} that can be calculated directly from the rotational constants. However, Duncan [16] has recently shown that r_{s} structures of methyl iodide and methyl chloride based on $\mathrm{CH}_{3} \mathrm{X} / \mathrm{CH}_{2} \mathrm{DX}$ substitution result in CH bonds that are abnormally long when compared to the equilibrium values. In a microwave study Mallinson [17] has confirmed this result for methyl iodide.

From the data presented above for $\mathrm{CH}_{2} \mathrm{DF}$ and earlier studies of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ and ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ [3] the $r_{\text {s }}$ structure of the methyl group can be calculated. As isotopic substitution cannot be performed on fluorine, the $\mathrm{C}-\mathrm{F}$ bond distance was calculated using the center of mass equation, $\Sigma m_{i} z_{i}=0$. Table 5 shows a comparison between this structure and an equilibrium calculation of Duncan [18]. Inspection of Table 5 shows that unlike the results that have been obtained for the heavier species, the r_{s} structure of methyl fluoride agrees with the r_{e} structure to within the experimental uncertainty of the r_{e} [19].

ACKNOWLEDGEMENT

The authors would like to thank Professor Walter Gordy for his encouragement and support.

REFERENCES

[^1]12 R. B. Nerf, Ap. J., 174 (1972) 467.
13 D. R. Johnson, F. X. Powell and W. H. Kirchhoff, J. Mol. Spectrosc., 39 (1971) 136.
14 R. L. Cook, F. C. de Lucia and P. Helminger, J. Mol. Spectrosc., 41 (1972) 123.
15 C. C. Costain, J. Chem. Phys., 29 (1958) 864.
16 J. L. Duncan, J. Mol. Struct., 22 (1974) 225.
17 P. D. Mallinson, J. Mol. Spectrosc., 55 (1975) 94.
18 J. L. Duncan, J. Mol. Struct., 6 (1970) 447.
19 The equilibrium values of Duncan were caiculated from IR values of A_{0} and B_{0} and information inferred from the trends of $A_{0}-A_{e}$ and $B_{0}-B_{e}$ in the other methyl halides. It would appear that since $A_{0}-A_{e}$ and $B_{o}-B_{e}$ are both small and nearly constant for $\mathrm{CH}_{3} \mathrm{I}_{3} \mathrm{CH}_{3} \mathrm{Br}$, and $\mathrm{CH}_{3} \mathrm{Cl}^{2}$ that the equilibrium structure of methyl fluoride is approximately as accurate as the structure of the other methyl halides. The uncertainties quoted for the other halides are $\pm 0.004 \AA$ for $r_{\mathbf{C H}}$ and $\pm 0.002 \AA$ for $r_{\mathbf{C X}}$.

[^0]: *This work was supported by the U.S. Army Research Office, Grant DAHCO4 74-GOO34.

[^1]: 1 C. diLauro and L. M. Mills, J. Mol. Spectrosc., 21 (1966) 386.
 2 J. R. Riter, Jr. and D. F. Eggars, Jr., J. Chem. Phys., 44 (1966) 745.
 3 O. R. Gilliam, H. D. Edwards and W. Gordy, Phys. Rev., 75 (1949) 1014.
 4 S. L. Miller, L. C. Aamodt, G. Dousmanis, C. H. Townes and J. Kraitchman, J. Chem. Phys., 20 (1952) 1112.
 5 R. S. Winton and W. Gordy, Phys. Lett. A, 32 (1970) 219.
 6 J. K. G. Watson, J. Chem. Phys., 45 (1966) 1360; 46 (1967) 1935; 48 (1968) 4517.
 7 P. Helminger, F. C. de Lucia and W. Gordy, Phys. Rev. Lett., 20 (1970) 1397.
 8 F. C. de Lucia, J. Mol. Spectrosc., 55 (1975) 271.
 9 F. C. de Lucia, P. Helminger, R. L. Cook and W. Gordy, Phys. Rev. A, 5 (1972) 487.
 10 F. C. de Lucia, R. L. Cook, P. Helminger and W. Gordy, J. Chem. Phys., 55 (1971) 5334.

 11 F. C. de Lucia and P. Helminger, J. Mol. Spectrosc., 54 (1975) 200.

