Physics 880.06: Problem Set 2

Note: please turn these problems into the mailbox of the grader, Wissam Al-Saidi, by 12 noon on Friday, April 19.

1. (a). Consider a free electron gas of density n electrons per unit volume (in three dimensions). Calculate the electronic density of states \(N(E) \) (in states per unit energy per unit volume). Show, in particular that \(N(E) = A\sqrt{E} \), and calculated the constant A in terms of fundamental constants and the density n.
(b). Calculate the Fermi energy \(E_F \) in terms of n.
(c). Hence, find \(N(E_F) \).
(d). Find the actual numerical values of these quantities for the metal aluminum, assuming that there are three valence electrons per atom.
(e). Repeat (a) - (c) for a two-dimensional electron gas, except that n is understood now as the electron density per unit area.

2. We showed in class that the relative wave function of a Cooper pair is proportional to

\[
\sum_{k > k_F} \frac{\cos k \cdot r}{2\xi_k + 2E_F - E},
\]

where (as stated in class) \(\xi_k = \epsilon_k - E_F \), \(E = 2E_F + 2\hbar\omega_c \exp[-1/(N(0)V)] \), \(\hbar\omega_c \) is a suitable cutoff energy, \(E_F \) is the Fermi energy, and the sum runs up to \(k \) such that \(\epsilon_k = E_F + \hbar\omega_c \). If we define \(g_k = 1/[2\xi_k + 2E_F - E] \), then the largest coefficient \(g_k \) corresponds to \(k = k_F \).
(a). Estimate the value of \(\epsilon_k \) such that \(g_k \) equals half its maximum value, and estimate the corresponding value of \(k \). Assume that \(\hbar\omega_c \) is much less than \(E_F \). Show that in the weak-coupling regime, this energy satisfies \(\epsilon_k = E_F + \Delta \), where \(\Delta \) is a quantity much less than \(\hbar\omega_c \).
(b). Hence, obtain an approximate expression for the coherence length (i.e. the size of the Cooper pair in space). Make use of an appropriate uncertainty relation between this size and the spread in k-space of the wave vectors entering the Cooper pair wave function. Make a numerical estimate of this coherence length for aluminum, taking \(\Delta \) comparable to...
to \(k_B T_c \), where \(T_c \) is the superconducting transition temperature for aluminum and using a suitable value of the Fermi energy.

3. (20 pts.) Using the BCS ground state wave function described in class, confirm the statement of Tinkham that the mean-square fluctuation in electron number in this wave function is

\[
\langle (N - \bar{N})^2 \rangle = 4 \sum_k u_k^2 v_k^2.
\]

(2)

where \(\bar{N} \) is the mean number of electrons in this wave function, given by \(\bar{N} = 2 \sum_k v_k^2 \).

You may take the coefficients \(u_k \) and \(v_k \) to be real.

Hint: first show that

\[
\langle \Psi_G | n_{k\sigma} n_{k'\sigma'} | \Psi_G \rangle = \langle \Psi_G | n_{k\sigma} | \Psi_G \rangle \langle \Psi_G | n_{k'\sigma'} | \Psi_G \rangle
\]

(3)

for \(k \neq k' \), and, for \(k = k' \), it equals \(\langle \Psi_G | n_{k\sigma} | \Psi_G \rangle \). (Here, \(\sigma \) is a spin index and \(| \Psi_G \rangle \) denotes the ground state. With these results, you should be able to show that \(\langle (N - \bar{N})^2 \rangle \) simplifies to a single sum.