1. Ashcroft and Mermin, Chapter 9, Problem 3.

2. Consider the tight-binding approximation for an s-band in a triangular lattice with lattice constant a. Let the normalized atomic wave function be denoted $\phi(\mathbf{r})$. Assume that the hopping matrix element $H_{\mathbf{R},\mathbf{R}'} \equiv \int_{\mathbb{R}^3} d\mathbf{r} \phi(\mathbf{r} - \mathbf{R}) H \phi(\mathbf{r} - \mathbf{R}') = -t$ ($t > 0$) if \mathbf{R} and \mathbf{R}' are nearest neighbor Bravais lattice vectors, $H_{\mathbf{R},\mathbf{R}'} = \epsilon_0$ if $\mathbf{R} = \mathbf{R}'$, and $H_{\mathbf{R},\mathbf{R}'} = 0$ otherwise.

(a) Find the band energies $E(k)$ in terms of t, a, and ϵ_0.

(b). Show that near the bottom of the band $E(k) = E_{\text{min}} + \hbar^2 k^2 / (2m^*)$, and find E_{min} and m^* in terms of ϵ_0, t, and a.

(c). What is the band width, in terms of t, ϵ_0, and a?

3. For edification only; not to be turned in. Consider a layered dielectric consisting of alternate layers of thickness d_1 and d_2, having dielectric constants ϵ_1 and ϵ_2, and consider a linearly polarized plane electromagnetic wave propagating perpendicular to the layers. Let this be denoted the z direction.

(a). Write down the form of the electric field, given that it must satisfy Bloch’s theorem. Write down the corresponding magnetic field \mathbf{B}. (Assume that the relative permeability $\mu = 1$ in both media.)

(b). What are the boundary conditions on \mathbf{E} and \mathbf{B} at $z = d_1$ and $z = d_1 + d_2$?

(c). Using (a) and (b), find a determinantal equation which gives a relationship between the Bloch vector k and the frequency ω. Don’t try to solve this equation.