(20 pts.) Consider scattering by a repulsive delta-shell potential defined by:

\[
\frac{2mV(r)}{\hbar^2} = \gamma \delta(r - R),
\]

(1)

with \(\gamma > 0 \). (a). Set up an equation that determines the s-wave phase shift, \(\delta_0 \), as a function of \(k \). \([E = \hbar^2 k^2 / (2m)].\) (b). Assume now that \(\gamma \) is very large,

\[
\gamma > \frac{1}{R}; \gamma \gg k.
\]

(2)

Show that if \(\tan(kR) \) is not close to zero, the s-wave phase shift resembles the hard-sphere result discussed in class and in the text. Show also that for \(\tan(kR) \) close to (but not exactly equal to) zero, resonance behavior is possible; that is \(\cot \delta_0 \) goes through zero from the positive side as \(k \) increases. Determine approximately the positions of the resonances keeping terms of order \(1/\gamma \); compare these with the bound-state energies for a particle confined inside an infinitely hard spherical well of the same radius,

\[
V(r) = 0; r < R; \quad V(r) = \infty, \quad r > R.
\]

(3)

Also, obtain an approximate expression for the resonance width \(\Gamma \) defined by

\[
\Gamma = -\frac{2}{[d(\cot \delta_0)/dE]_{E=Ec}}.
\]

(4)

Show that these resonances become extremely sharp as \(\gamma \) becomes large.