Optical Properties of Composites

Many of these are available online. Click on red circles to link.

  1. o
  2. ``Control of Light Transmission Through Perforated metal Films Using Liquid Crystals,'' Yakov M. Strelniker, D. Stroud, and A. O. Voznesenskaya, European Journal of Physics B , 52, pp. 1-7 (2006).

  3. o
  4. ``Magneto-Optical Features and Extraordinary Light Transmission Through Perforated Me3tal Films Filled With Liquid Crystals,'' Yakov M. Strelniker, D. Stroud, and A. O. Voznesenskaya, J. Appl. Phys.99, 08H702 (2006).

  5. o
  6. ``Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-coated Gold Nanoparticle,'' Sung Yong Park and D. Stroud, Phys. Rev. Lett.94, 217401 (2005).

  7. o
  8. ``Splitting of Surface Plasmon Frequencies of Metallic Particles in a Nematic Liquid Crystal,'' Sung Yong Park and David Stroud, Appl. Phys. Lett.85, 2920 (2004).

  9. o
  10. ``Surface Plasmon Dispersion Relations in Chains of Metallic Nanoparticles: Exact Quasistatic Calculation,'' Sung Yong Park and David Stroud, Phys. Rev. B69, 125418 (2004).

  11. o ``Second Harmonic Generation for a Dilute Suspension of Coated Particles,'' P. M. Hui, C. Xu, and D. Stroud, Phys. Rev. B69, 014203 (2004).

  12. o ``Dimensional Crossover in the Effective Second Harmonic Generation of Films of Random Dielectrics,'' P. M. Hui, C. Xu, and D. Stroud, Phys. Rev. B69, 014202( 2004).

  13. o``Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time,'' Sung Yong Park and D. Stroud, Phys. Rev. B68, 224201 (2003).

  14. o ``Theory of Melting and the Optical Properties of Gold/DNA Nanocomposites,'' Sung Yong Park and D. Stroud, Phys. Rev. B67, 212202 (2003).

  15. o ``Effective Macroscopic Response of a Composite with Small Deviations from Periodicity: Application to Colloidal Crystals,'' S. V. Barabash and D. Stroud, Physica B338, pp. 4-7 (2003).

  16. o ``Theory of the Optical Properties of a DNA-Modified Gold Nanoparticle System,'' Sung Yong Park and David Stroud, Physica B 338, 353-356 (2003).

  17. o``Response of Composite Media Made of Weakly Nonlinear Constituents,'' David J. Bergman and David G. Stroud, in {\em Optical Properties of Nanostructured Random Media}, edited by V. M. Shalaev (Springer, Berlin, 2002; published as Topics in Applied Physics, vol. 81), pp. 19-41 (2002). ABSTRACT

  18. o ``Spectral Representation for the Effective Macroscopic Response of a Polycrystal: Application to Third-Order Nonlinear Susceptibility,'' S. Barabash and D. Stroud, J. Phys.: Condensed Matter 11, 10323-10334 (1999). ABSTRACT

  19. o``Theory of Third Harmonic Generation in Random Composites of Nonlinear Dielectrics,'' P. M. Hui, P. Cheung, and D. Stroud, Journal of Applied Physics, 84, 3451 (1998). ABSTRACT

  20. o ``Theory of Second Harmonic Generation in Composites of Nonlinear Dielectrics,'' P. M. Hui and D. Stroud, J. Appl. Phys. 82, 4740 (1997). ABSTRACT

  21. o``A Maxwell-Garnett Theory for Mixtures of Anisotropic Inclusions: Applications to Conducting Polymers,'' Ohad Levy and David Stroud, Phys. Rev. B 56, 8035 (1997).

  22. o ``Macroscopic Disorder and the Metal-Insulator Transition in Conducting Polymers,'' Ohad Levy and David Stroud, J. Physics (Condensed Matter) 9, L599 (1997).

  23. o ``Optical Sum Rules and Effective Medium Theories for a Polycrystalline Material: Application to a Model for Polypyrrole,'' D. Stroud and A. Kazaryan, Phys. Rev. B 53, 7076 (1996). ABSTRACT

  24. o ``Giant Enhancement of Cubic Nonlinearity in a Polycrystalline Material,'' David Stroud, Phys. Rev. B 54, 3295 (1996). ABSTRACT

  25. o ``Harmonic Generation, Induced Nonlinearity, and Optical Bistability in Nonlinear Composites,'' Ohad Levy, David J. Bergman, and David G. Stroud, Phys. Rev. E 52, 3184 (1995). ABSTRACT

  26. o ``Optical and Electrical Properties of Thin Films,'' Xifeng Zhang and D. Stroud, Phys. Rev. B 52, 2131 (1995).

  27. o ``Propagating Photonic Modes Below the Gap in a Superconducting Composite,'' W. M. Lee, P. M. Hui, and D. Stroud, Phys. Rev. B 51, 8634 (1995) (Brief Reports).

  28. o ``Effective Medium Theory for the Optical Properties of Diamond and Diamond-Like Films,'' Z. Q. Wang, D. Stroud, and S. A. Dregia, Phys. Rev. B 50, 12073 (1994).

  29. o ``Effective Linear and Nonlinear Response of Fractal Clusters,'' P. M. Hui and D. Stroud, Phys. Rev. B 49, 11729 (1994).

  30. ``Cubic Nonlinearities in Small Particle Composites: Local-Field-Induced Giant Enhancements,'' D. Stroud and X. Zhang, Physica A 207, pp. 55-64 (1994) (invited paper).

  31. o ``Numerical Studies of the Nonlinear Properties of Composites,'' X. Zhang and D. Stroud, Phys. Rev. B 49, 944 (1994).

  32. o ``Theory of Optical Bistability in a Weakly Nonlinear Composite Medium,'' D. J. Bergman, O. Levy, and D. Stroud, Phys. Rev. B 49, 129 (1994).

  33. o ``Scaling Behavior and Surface Plasmon Resonances in a Model Three-Dimensional Metal-Insulator Composite,'' X. Zhang and D. Stroud, Phys. Rev. B 48, 6658 (1993) (Brief Reports).

  34. o ``Photonic Band Structures of Optically Anisotropic Periodic Structures,'' I. H. H. Zabel and D. Stroud, Phys. Rev. B 48, 5004 (1993).

  35. o ``Effective Dielectric Response of Nonlinear Composites,'' K. W. Yu, P. M. Hui, and D. Stroud, Phys. Rev. B 47, 14150 (1993).

  36. ``Light Propagation in Porous Media,'' B. R. De and D. Stroud, in Photonic Band Gaps and Localization C. M. Soukoulis, ed. (Plenum, New York, 1993), pp. 151-164.

  37. o ``Optical Analog of the Permeability of Sandstones,'' B. R. De, I. H. H. Zabel, D. Stroud, and M. A. Nelson, Phys. Rev. B 45, 196 (1992).

  38. o ``Metal Clusters and Model Rocks: Electromagnetic Properties of Conducting Fractal Aggregates,'' by I. H. H. Zabel and D. Stroud, Phys. Rev. B 46, 8132 (1992).

  39. o ``Far Infrared Absorption by Fractal Metal Clusters,'' I. H. Hoffmann and D. Stroud, Phys. Rev. B 43, 9965 (1991) (Rapid Communications).

  40. ``Theory of Faraday Rotation by Magnetic Composites,'' T.-K. Xia, P. M. Hui, and D. Stroud, J. Appl. Phys. 67, 2736 (1990).

  41. ``Theory of Intensity-Dependent Optical Activity in Dilute Composites,'' D. Stroud, J. Appl. Phys. 66, 2585 (1989).

  42. o ``Correlation and Clustering in the Optical Properties of Composites: A Numerical Study,'' X. C. Zeng, P. M. Hui, D. J. Bergman, and D. Stroud, Phys. Rev. B 39, 13224 (1989).

  43. ``Decoupling Approximation for the Nonlinear Optical Response of Composite Media,'' D. Stroud and Van E. Wood, J. Optical Society of America B 6, 778 (1989).

  44. o ``Numerical Study of Optical Absorption in Two-Dimensional Metal-Insulator and Normal-Superconductor Composites,'' X. C. Zeng, D. Stroud, and P. M. Hui, Phys. Rev. B 39, 1063 (1989).

  45. o ``Scaling Theory and Surface Plasmon Modes in Metal-Insulator Composites,'' R.S. Koss and D. Stroud, Phys. Rev. B 35, 9004 (1987).

  46. ``Theory of Faraday Rotation by Dilute Suspensions of Metal Spheres,'' P. M. Hui and D. Stroud, Appl. Phys. Lett. 50, 950 (1987).

  47. ``Theory of the Optical and Infrared Properties of Small Metal Particles,'' D. Stroud and P.M. Hui, in Physics and Chemistry of Small Clusters (Plenum, New York, 1987), pp. 547-565 (invited review paper).

  48. ``Anomalous Transport in Random Resistor-Capacitor Networks,'' K. W. Yu, P. M. Hui and D. Stroud, Physics Letters 118A, 305 (1986).

  49. o ``Anomalous Dielectric Response of Brine-Saturated Porous Rocks,'' D. Stroud, G. W. Milton and B. R. De, Phys. Rev. B 34, 5145 (1986).

  50. o ``Complex Dielectric Response of Metal-Particle Clusters,'' P.M. Hui and D. Stroud, Phys. Rev. B 33, 2163 (1986).

  51. o ``Anomalous Frequency-Dependent Conductivity in Metal-Insulator Composites,'' P. M. Hui and D. Stroud, Phys. Rev. B 32, 7728 (1985).

  52. o ``Theory of Far Infrared Absorption in Superconducting Composites,'' J. Garner and D. Stroud, Phys. Rev. B 28, 2447 (1983).

  53. o ``Frequency Dependence of the Polarization Catastrophe at a Metal-Insulator Transition and Related Problems,'' D. Stroud and D. J. Bergman, Phys. Rev. B 25, 2061 (1982).

  54. o ``Theory of Resonances in the Electromagnetic Scattering From Macroscopic Bodies,'' D. J. Bergman and D. Stroud, Phys. Rev. B 22, 3527 (1980).

  55. o ``Percolation Effects and Sum Rules in the Optical Properties of Composites,'' D. Stroud, Phys. Rev. B 19, 1783 (1979).

  56. ``The 38K Transition in TTF-TCNQ Viewed as a Percolation Phenomenon,'' F. P. Pan, D. Stroud and D. B. Tanner, Sol. State Commun. 20, 271 (1976).

  57. o ``Self-Consistent Approach to Electromagnetic Wave Propagation in Composite Media: Application to Model Granular Metals,'' D. Stroud and F. P. Pan, Phys. Rev. B 17, 1602 (1978). [Reprinted in Vol. MS120 of SPIE's Milestone Series of Selected Reprints: Linear Optical Composite Materials, edited by Akhlesh Lakhatia (SPIE Optical Engineering Press, Bellingham, WA, 1996), pp. 270-78.]