Feynman Rules
(Momentum Space)

Propagators

Scalar : \[\frac{i}{p^2 - m_S^2 + i\epsilon} \]
Fermion : \[\frac{i(\gamma^\mu p_\mu + m_f)}{p^2 - m_f^2 + i\epsilon} \]
Photon : \[\frac{-i}{p^2 + i\epsilon} \{g^{\mu\nu} - (1 - \xi)\frac{p^\mu p^\nu}{p^2} \} \]

Vertices

QED : \[-ie\gamma^\mu \]
Yukawa : \[-iy \]
\(\phi^4\) theory : \[-i\lambda \]

External lines

incoming fermion : \[u(k, s) \]
outgoing fermion : \[\bar{u}(p, s) \]
incoming antifermion : \[\bar{v}(k, s) \]
outgoing antifermion : \[v(p, s) \]
scalars : \[1 \]
incoming photon : \[\epsilon_\mu(p) \]
outgoing photon : \[\epsilon^*_\mu(p) \]

Additional rules
Momentum conserving \(\delta\)-function at each vertex : \((2\pi)^4 \delta^{(4)}(\sum p_i) \)
Momentum integral for each internal line : \(\int \frac{d^4q}{(2\pi)^4} \)
One should carry out as many of these integrals as possible using the above \(\delta\)-functions.
Divide by symmetry factors (diagram specific).