Approaching the Landscape: Computability of IIB/F-theory Instantons and Insights from MSSM-containing Quivers

Jim Halverson

November 5, 2010

Based on: [1009.5386] with M. Cvetič and I. García-Etxebarria [1006.3341] with M. Cvetič and P. Langacker recent work with M. Cvetič and P. Langacker, *to appear*

Approaching the Landscape: Motivation

String vacua allow for many physical effects seen in our world:

- gauge symmetry, chiral matter, quantum gravity, inflation, etc.
- In a perfect world . . .
 - write down all vacua
 - calculate all low-energy physical effects
 - compare to our world

But there are problems . . . (obviously)

- landscape is enormous
- what is / specifies a vacuum?
- lack of perfect computational techniques.
- conjecture: there exists no algorithm which calculates all non-perturbative effects across the landscape. [MC, JH, IGE]

F 4 3 10 10

What Makes a "Good Approach"?

"Good approach" to study the landscape depends on:

- physics of interest.
 - → a given physical effect usually depends on some subset of vacuum data.
 - → coarse-grained approach w/ subsets ⇒ non-trivial insights on broader patches of the landscape.
- issues of computability.
 - Can we actually calculate the physics we'd like to study?
 - "patchy" landscape, algorithmically, due to relation to number theory and the corresponding computability conjecture.

will give two major examples.

Outline

1 Motivation

Outline

2 Instanton Computability

- IIB Basics
- Computational Techniques
- Exactly Solvable Case

3 Quiver Insights

- Constraints on Matter
- Singlet-Extended Systematics

④ Summary

Type IIB Orientifolds

good overview for CY_3 : [Blumenhagen, Braun, Grimm, Weigand]

Specify Basic Geometric and Brane Data:

• a Calabi-Yau threefold X.

 \rightsquigarrow triple intersection numbers of divisors (are wrapped by D7's)

- a holomorphic involution σ .
 - $\rightsquigarrow O7/O3$ -planes at fixed locus of σ .
- tadpole cancellation \rightarrow must introduce D7-branes.

 \rightsquigarrow condition on homology.

Relatively straightforward

 \rightsquigarrow when ${\mathcal X}$ is a complete-intersection in a toric variety!

D-Instanton Basics

[Blumenhagen, Cvetič, Weigand], [Ibañez, Uranga], [Florea, Kachru, McGreevy, Saulina]

in type IIB, consider ED3 instantons:

- pointlike in spacetime.
- wrap a divisor (four-cycle) in the Calabi-Yau.

Uncharged Modes: Instanton-Instanton Strings \rightsquigarrow counted by \mathbb{Z}_2 -equivariant sheaf cohomology $h^i_+(D, \mathcal{O}_D)$:

Crucial: W contribution $\Leftrightarrow h^0_+(D, \mathcal{O}_D) = 1$ (θ mode), rest zero.

Charged Modes: Instanton-Gauge Brane Strings \rightsquigarrow counted by sheaf cohomology $h^i(\mathcal{C}, \mathcal{L} \otimes K_{\mathcal{C}}^{1/2})$: \mathcal{L} encodes flux on D7.

Geometric Indices: Necessary Constraints for W Contribution

医子宫下子 医下口

Toric Geometry: The Basics

Very roughly: A generalization of weighted projective spaces. $\rightsquigarrow (x_1, \dots, x_r) \sim (\lambda^{Q_1^a} x_1, \dots, \lambda^{Q_r^a} x_r)$

Illustrative Examples:

\mathbb{P}^2							
$Q_1: \ (x_1, x_2, x_3) \sim (\lambda^1 x_1, \lambda^1 x_2, \lambda^1 x_3)$							
$SRI = \langle x_1 x_2 x_3 \rangle.$							
Coor	ds $\mid Q^1$						
$\overline{x_1}$	1						
x_2	1						
x_3	1						

dP_1

$Q_1: (x_1, x_2, x_3, x_4) \sim (\lambda x_1, \lambda x_2, \lambda x_3, x_4)$								
$Q_2: (x_1, x_2, x_3, x_4) \sim (x_1, \mu x_2, x_3, \mu x_4)$								
$SRI = \langle x_1 x_3, x_2 x_4 \rangle.$								
	Coords	Q^1	Q^2					
	x_1	1	0					
	x_2	1	1					
	x_3	1	0					
	x_4	0	1					

The point: Can realize Calabi-Yau's as hypersurfaces or complete intersections in an ambient toric variety. \rightsquigarrow (e.g. the quintic)

Calculation: Indices and Line Bundle Cohomology

toric variety \mathcal{A} , $CY_3 \mathcal{X}$, instanton wraps divisor D. $\mathcal{A} \supset \mathcal{X} \supset D$.

Index Calculation: Integrating characteristic classes

- knowing Chern classes on A, can calculate classes on D.
- integrate classes on D using intersection form.
- \rightsquigarrow diophantine equations in d_i of $D = \sum_i d_i D_i$.

Cohomology Calculation: Sheaf cohomology on D

- relate coh. on D to coh. on \mathcal{A} by Koszul sequences.
- calculate relevant line bundle cohomology on A.

→ ex. w/ conventional Čech complex.
 [Cvetič, García-Etxebarria, J.H.] (March)

→ efficient new theorem using intuition from SRI. [Blumenhagen, Jurke, Rahn, Roschy] (March), [Jow], [Rahn, Roschy]

- 4 周 ト 4 月 ト 4 月 ト

\mathbb{Z}_2 -equivariant Cohomology of Line Bundles

necessary and sufficient for W contribution.

Want to determine:

→ are modes orientifold odd or even?

Two key facts:

- New theorem tells you which sections contribute to cohomology.
- There is a natural σ -action on sections.

Z₂-equivariant Cohomology Conjecture:

 $[\mathsf{Cveti}\check{\mathsf{c}}, \, \mathsf{Garc}\check{i}\mathsf{a}\mathsf{-}\mathsf{Et}\mathsf{x}\mathsf{e}\mathsf{b}\mathsf{arr}\mathsf{i}\mathsf{a}, \, \mathsf{J}.\mathsf{H}.] \qquad \qquad \sigma: x_i\mapsto -x_i \,\, \mathsf{for \,\, some }\, i\mathsf{'s}.$

determined by action on sections which contribute to cohomology.

Non-trivial Checks:

- sensible from σ -action on the Čech complex.
- checked in for thousands of bundles against Lefschetz genus.

Quick \mathbb{Z}_2 -equivariant Example:

consider $\mathcal{O}_{\mathbb{P}^1}(2)$, with $\sigma: x_0 \mapsto -x_0$ as the involution.

 $h^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(2)) = 3$ since $\mathcal{O}_{\mathbb{P}^1}(2)$ has global sections x_0^2 , x_0x_1 , x_1^2 .

then:

$$\begin{split} \sigma &: x_0^2 \mapsto x_0^2 \\ \sigma &: x_0 x_1 \mapsto -x_0 x_1 \\ \sigma &: x_1^2 \mapsto x_1^2 \end{split}$$

$$\stackrel{}{\leadsto} \quad h^0_+(\mathbb{P}^1,\mathcal{O}_{\mathbb{P}^1}(2))=2 \quad \text{ and } \quad h^0_-(\mathbb{P}^1,\mathcal{O}_{\mathbb{P}^1}(2))=1$$

Many applications and same conjecture made in [Blumenhagen, Jurke, Rahn, Roschy]

Computability of All Instanton Effects?

Computability Punchline:

can determine all instanton corrections

can find all solutions to a system of diophantine equations

Natural question: Is there an algorithm which solves them for some non-trivial patch of vacua?

$$\rightarrow$$
 doable when $h_{\mathcal{X}}^{11} = 1$ (e.g., $\mathcal{X} = \mathsf{quintic}$)

→ but maybe there's a more interesting patch?

"Factorizing" Manifolds: [Cvetič, García Etxebarria, J.H.]

Exact Non-perturbative Uncharged Superpotentials

If IIB compactification has:

- $\mathcal{X} \text{ w}/$ "factorizing" intersection form, $I_{\mathcal{X}} = Df_2$ for some D.
- no D7-branes with component along D.

Then:

• can solve the diophantine system.

→ can find all uncharged instanton corrections.

Remarks:

- includes *many* elliptically fibered threefolds.
- factorization structure greatly elucidated in $\mathcal{X} \subset \mathcal{A}$ cases.

A Concrete Example: Elliptic fibration over dP_2

Manifold, defined: the toric space A and CY $\mathcal{X} \subset A$ are given by

	x_1	x_2	x_3	x_4	x_5	x	y	z	
\mathbb{C}^*	1	1	1	0	0	6	9	0	M
\mathbb{C}^*	0	1	0	0	1	4	6	0	N
\mathbb{C}^*	1	0	0	1	0	4	6	0	0
\mathbb{C}^*	0	0	0	0	0	2	3	1	P

 $SRI = \langle x_1 x_3, x_1 x_4, x_2 x_3, x_2 x_5, x_4 x_5, xyz \rangle$

 $\begin{aligned} \mathcal{X} &= \{y^2 = x^3 + f(x_i)xz^4 + g(x_i)z^6\} & \Leftarrow \text{Weierstrass Equation} \\ I_{\mathcal{X}} &= P(MN + MO - MP - NP - OP - M^2 - N^2 - O^2 + 7P^2) \end{aligned}$

Comment 1: note that $[D_8] = P$ factorizes out. $D_8 = dP_2$ base! Comment 2: manifold used for semi-realistic GUT model. Orientifold Involution: $\sigma: x_2 \mapsto -x_2$

Now consider: ED3 instanton on D = mM + nN + oO + pPwith $m, n, o, p \in \mathbb{Z}$.

Uncharged Modes: Necessary Constraint

$$\chi(D, \mathcal{O}_D) = -\frac{1}{6}(3m^2p - 6mnp + 3n^2p - 6mop + 3o^2p + 3mp^2 + 3np^2 + 3op^2 - 7p^3 - 6m - 6n - 6o + p) \stackrel{?}{=} 1.$$

Absence of Charged Modes for Given D7, either:

- D doesn't intersect D_{D7} . (sufficient)
- $D \cap D_{D7} = \mathcal{C} = \mathbb{P}^1$. (necessary if $D \cap D_{D7} \neq \emptyset$, not sufficient)
- \rightsquigarrow in short, because $h^i(\mathbb{P}_1, \mathcal{O}(-1)) = (0, 0)$. Not uncommon.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うのの

Non-intersection conditions:

$$D_2 \cdot D = 0 \quad \leftrightarrow \quad p = 0 \quad o = 2p$$

$$D_3 \cdot D = 0 \quad \leftrightarrow \quad p = 0 \quad m = n + o$$

$$D_5 \cdot D = 0 \quad \leftrightarrow \quad p = 0 \quad m = n.$$

Intersect at \mathbb{P}^1 conditions:

$$\chi(D \cdot D_2) = -2p(o-p) = 2 - 2g \stackrel{\mathbb{P}^1}{=} 2$$

$$\chi(D \cdot D_3) = p(2m - 2n - 2o + p + 1) = 2 - 2g = 2$$

$$\chi(D \cdot D_5) = -p(2m - 2n - p - 1) = 2 - 2g = 2$$

Jim Halverson Approaching the Landscape: Computability of IIB/F-theory Instantons and Insights from MSSM-containing Quivers

-

SQA

Solution: Restricts to **finite set** of contributing instantons.

Then $\chi(D, \mathcal{O}_D) = 1 \Rightarrow$ only D = P contributes to the uncharged superpotential.

This solution algorithm applies generically to

compactifications satifying the above conditions.

- \rightsquigarrow demonstrates "patchiness" of the landscape.
- \rightsquigarrow solves an interesting physical problem.

Other physical problems?

Study Chiral Matter Spectra:

 $\bullet\,$ IIB, depends on topological data of ${\cal X}$ and flux.

- but Calabi-Yau manifolds are fairly detailed . . . gets tedious
- can we specify less, which gains breadth, and still learn interesting things?

String Theoretic Constraints on Chiral Matter

to have tadpole cancellation and a massless $U(1)_Y$: constraints on the homology of branes must be satisfied.

gives necessary constraints on chiral spectrum

- some are standard anomaly cancellation constraints.
 - → beautiful geometric picture of non-abelian cancellation.
- also some genuinely stringy constraints.
- holds across weakly coupled type II, RCFT, (maybe more?) [Cvetič, J.H., Richter] [Anastasopoulos, Leontaris, Richter, Schellekens]

Key Point:

- use subset of vacuum data to learn as much as possible.
- rule out many D-brane quivers without specifying geometry.

Questions:

- Which matter fields beyond the MSSM (in given scenario) are preferred by chiral matter constraints (if any)?
- Which "preferences" are already present in field theory? Which are stringy (if any)?

Scenario: Three-stack quivers (first step, for simplicity)

- realize on D-brane stacks a,b,c with $U(3)_a imes U(2)_b imes U(1)_c$
- hypercharge realized only as $U(1)_Y = \frac{1}{6}U(1)_a + \frac{1}{2}U(1)_c$

or
$$U(1)_Y = -\frac{1}{3}U(1)_a - \frac{1}{2}U(1)_b$$

naa

• First embedding is "Madrid embedding".

Strategy / Approach:

[Cvetič, J.H., Langacker], to appear

• write down all three-stack quivers with exact MSSM.

→ even quivers which don't cancel tadpoles.

- write down all tadpole-cancelling matter additions (w/ n_{max}).
- **determine** which matter additions leave hypercharge massless.

→ prefer some types of matter over others?

Three-stack Madrid Embedding: Facts

• tadpoles take form $tad_{a,b,c} = (0, \pm 2n, 0)$ for $n \in \{0, \dots, 7\}$.

• all exact MSSM quivers satisfy masslessness constraints.

直 ト イヨト イヨト

Preliminary Results: Madrid Embedding

"Preferred" Matter Additions? (Tinker Toys)

- MSSM singlets \Box_b , hypercharge-less SU(2) triplets \Box_b , and extra chiral Higgs pairs, e.g. $(\overline{b}, c) + (\overline{b}, \overline{c})$.
- don't contribute to masslessness condition, use as building blocks to cancel tadpoles.
- → e.g., could add chiral Higgs pair + singlet to cancel $tad_b = 4$ $\Rightarrow S \widetilde{H}_u \widetilde{H}_d$ type coupling.

Matter Bounds:

- e.g. if just adding n_S chiral MSSM singlets, have $n_S \leq 7$.
- constraints on matter not present in field theory.

・吊 ・ ・ ラ ト ・ ラ

Singlet-Extended MSSM Quivers

[Cvetič, Halverson, Langacker] June 2010

Systematic Analysis of Three-Stack and Four-Stack Quivers. (along lines of [Cvetič, J.H., Richter](3), [Cvetič, J.H., Langacker, Richter])

Key addition: Add a singlet S with coupling $SH_{u}H_{d}$.

Constraints

- MSSM + S or MSSM + $3N_R$ + S.
- necessary for tadpole cancellation and a massless $U(1)_Y$.
- many phenomenological constraints.
- H_uH_d pert. and non-pert. forbidden, but SH_uH_d present.
- $LH_{u}S$ is absent, so $S \neq N_{R}$.
- can generate Sⁿ term without pheno. drawbacks.

Singlet-Extended MSSM Quivers

Results

- Only three quivers survive all constraints.
 - Singlets realized as bifundamental of U(1)'s, rather than \dashv_b .
- "Model-independent" quivers:
 - no S^n superpotential term is phenomenologically fixed.
 - \rightsquigarrow can in principle have $W \supset f(S)$, f a polynomial.
 - all three quivers could in principle realize the nMSSM, S² model, or NMSSM. Depends heavily on details of global embedding.

Summary

"Good approach" to study the landscape depends on:

- physics of interest.
 - → coarse-grained approach w/ subsets of vacuum data \Rightarrow non-trivial insights on broader patches of the landscape.
- issues of computability.
 - "patchy", algorithmically, due to relation to number theory and the corresponding computability conjecture.

Gave two major examples.

Summary

Example One: All Instanton Corrections to Uncharged W
 new conjecture: for certain Z₂-equivariant cohomology.

Solvable Patch: "Factorizing" Calabi-Yau Threefolds in IIB

- manifolds with a special divisor that participates in every non-zero triple intersection. i.e. $I_{\chi} = Df_2$ for some D.
- includes many elliptically fibered threefolds.
- Key point: certain diophantine equations become linear ⇒ can solve for all instantons contributing to uncharged W.

Summary

Example Two: Semi-realistic Quivers in type II

- "coarse-grained" approach
- Stringy Constraints on Chiral Matter
 - many quiver/matter additions might satisfy tadpole constraints, but which leave $U(1)_Y$ massless?

Three-stack Madrid Embedding:

- MSSM singlets, hyperchargeless *SU*(2) triplets, chiral Higgs pairs are **favored additions**.
- string-theoretic "matter bounds", e.g. $n_S \leq 7$.

Constraints necessary for tadpole cancellation:

$$#(a) - #(\overline{a}) + (N_a - 4)#(\square_a) + (N_a + 4)#(\square_a) = 0$$

Constraints necessary for massless $U(1)_Y$:

$$q_a N_a \left(\#(\Box a) + \#(\Box a) \right) = \sum_{x \neq a} q_x N_x \left(\#(a, \overline{x}) - \#(a, x) \right)$$

Jim Halverson Approaching the Landscape: Computability of IIB/F-theory Instantons and Insights from MSSM-containing Quivers

• = • •

-

SQA