Approaching the Landscape: Computability of IIB/F-theory Instantons and Insights from MSSM-containing Quivers

Jim Halverson

November 5, 2010
Based on:
[1009.5386] with M. Cvetič and I. García-Etxebarria
[1006.3341] with M. Cvetič and P. Langacker
recent work with M. Cvetič and P. Langacker, to appear

Approaching the Landscape: Motivation

String vacua allow for many physical effects seen in our world:

- gauge symmetry, chiral matter, quantum gravity, inflation, etc.

In a perfect world

- write down all vacua
- calculate all low-energy physical effects
- compare to our world

But there are problems (obviously)

- landscape is enormous
- what is / specifies a vacuum?
- lack of perfect computational techniques.
- conjecture: there exists no algorithm which calculates all non-perturbative effects across the landscape. [MC, JH, IGE]

What Makes a "Good Approach"?

"Good approach" to study the landscape depends on:

- physics of interest.
\rightsquigarrow a given physical effect usually depends on some subset of vacuum data.
\rightsquigarrow coarse-grained approach $w /$ subsets \Rightarrow non-trivial insights on broader patches of the landscape.
- issues of computability.
- Can we actually calculate the physics we'd like to study?
\leadsto "patchy" landscape, algorithmically, due to relation to number theory and the corresponding computability conjecture.
will give two major examples.

Outline

1 Motivation

- Outline

2. Instanton Computability

- IIB Basics
- Computational Techniques
- Exactly Solvable Case

3) Quiver Insights

- Constraints on Matter
- Singlet-Extended Systematics

4) Summary

Type IIB Orientifolds

good overview for $C Y_{3}$: [Blumenhagen, Braun, Grimm, Weigand]

Specify Basic Geometric and Brane Data:

- a Calabi-Yau threefold \mathcal{X}.
\rightsquigarrow triple intersection numbers of divisors (are wrapped by $D 7$'s)
- a holomorphic involution σ.
$\rightsquigarrow O 7 / O 3$-planes at fixed locus of σ.
- tadpole cancellation \rightarrow must introduce $D 7$-branes.
\rightsquigarrow condition on homology.

Relatively straightforward

\rightsquigarrow when \mathcal{X} is a complete-intersection in a toric variety!

D-Instanton Basics

[Blumenhagen, Cvetič, Weigand], [Ibañez,Uranga],[Florea, Kachru, McGreevy, Saulina]
in type IIB, consider ED3 instantons:

- pointlike in spacetime.
- wrap a divisor (four-cycle) in the Calabi-Yau.

Uncharged Modes: Instanton-Instanton Strings \rightsquigarrow counted by \mathbb{Z}_{2}-equivariant sheaf cohomology $h_{ \pm}^{i}\left(D, \mathcal{O}_{D}\right)$:

Crucial: W contribution $\Leftrightarrow h_{+}^{0}\left(D, \mathcal{O}_{D}\right)=1$ (θ mode), rest zero.
Charged Modes: Instanton-Gauge Brane Strings
\rightsquigarrow counted by sheaf cohomology $h^{i}\left(\mathcal{C}, \mathcal{L} \otimes K_{\mathcal{C}}^{1 / 2}\right)$: \mathcal{L} encodes flux on $D 7$.

Geometric Indices: Necessary Constraints for W Contribution

Toric Geometry: The Basics

Very roughly: A generalization of weighted projective spaces.

$$
\rightsquigarrow\left(x_{1}, \ldots, x_{r}\right) \sim\left(\lambda^{Q_{1}^{a}} x_{1}, \ldots, \lambda^{Q_{r}^{a}} x_{r}\right)
$$

Illustrative Examples:

$$
\left.\begin{gathered}
\mathbb{P}^{2} \\
Q_{1}:\left(x_{1}, x_{2}, x_{3}\right) \sim\left(\lambda^{1} x_{1}, \lambda^{1} x_{2}, \lambda^{1} x_{3}\right) \\
S R I=\left\langle x_{1} x_{2} x_{3}\right\rangle \\
\text { Coords } \\
\hline x_{1} \\
x_{2} \\
x_{3}
\end{gathered} \right\rvert\, \begin{gathered}
1 \\
\hline
\end{gathered}
$$

$$
\left. \right\rvert\, \begin{array}{l|l}
Q^{2} & 1 \\
\end{array}
$$

The point: Can realize Calabi-Yau's as hypersurfaces or complete intersections in an ambient toric variety. \rightsquigarrow (e.g. the quintic)

Calculation: Indices and Line Bundle Cohomology

toric variety $\mathcal{A}, C Y_{3} \mathcal{X}$, instanton wraps divisor $D . \mathcal{A} \supset \mathcal{X} \supset D$.
Index Calculation: Integrating characteristic classes

- knowing Chern classes on \mathcal{A}, can calculate classes on D.
- integrate classes on D using intersection form.
\rightsquigarrow diophantine equations in d_{i} of $D=\sum_{i} d_{i} D_{i}$.
Cohomology Calculation: \quad Sheaf cohomology on D
- relate coh. on D to coh. on \mathcal{A} by Koszul sequences.
- calculate relevant line bundle cohomology on \mathcal{A}.
\rightsquigarrow ex. w/ conventional Čech complex. [Cvetič, García-Etxebarria, J.H.] (March)
\rightsquigarrow efficient new theorem using intuition from SRI. [Blumenhagen, Jurke, Rahn, Roschy] (March), [Jow], [Rahn, Roschy]

\mathbb{Z}_{2}-equivariant Cohomology of Line Bundles

necessary and sufficient for W contribution.

Want to determine:
\rightsquigarrow are modes orientifold odd or even?

Two key facts:

- New theorem tells you which sections contribute to cohomology.
- There is a natural σ-action on sections.

\mathbb{Z}_{2}-equivariant Cohomology Conjecture:

[Cvetič, García-Etxebarria, J.H.] $\quad \sigma: x_{i} \mapsto-x_{i}$ for some i 's.
determined by action on sections which contribute to cohomology.

Non-trivial Checks:

- sensible from σ-action on the Čech complex.
- checked in for thousands of bundles against Lefschetz genus.

Quick \mathbb{Z}_{2}-equivariant Example:

consider $\mathcal{O}_{\mathbb{P}^{1}}(2)$, with $\sigma: x_{0} \mapsto-x_{0}$ as the involution.
$h^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right)=3$ since $\mathcal{O}_{\mathbb{P}^{1}}(2)$ has global sections $x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}$.
then:

$$
\begin{aligned}
& \sigma: x_{0}^{2} \mapsto x_{0}^{2} \\
& \sigma: x_{0} x_{1} \mapsto-x_{0} x_{1} \\
& \sigma: x_{1}^{2} \mapsto x_{1}^{2} \\
\rightsquigarrow & h_{+}^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right)=2 \quad \text { and } \quad h_{-}^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right)=1
\end{aligned}
$$

Many applications and same conjecture made in [Blumenhagen, Jurke, Rahn, Roschy]

Computability of All Instanton Effects?

Computability Punchline:

can determine all instanton corrections

can find all solutions to a system of diophantine equations

Natural question: Is there an algorithm which solves them for some non-trivial patch of vacua?
$\rightsquigarrow \quad$ doable when $h_{\mathcal{X}}^{11}=1$ (e.g., $\mathcal{X}=$ quintic)
$\leadsto \quad$ but maybe there's a more interesting patch?

"Factorizing" Manifolds: [Cvetič, García Etxebarria, J.H.]

Exact Non-perturbative Uncharged Superpotentials

If IIB compactification has:

- \mathcal{X} w/ "factorizing" intersection form, $I_{\mathcal{X}}=D f_{2}$ for some D.
- no $D 7$-branes with component along D.

Then:

- can solve the diophantine system.
$\rightsquigarrow \quad$ can find all uncharged instanton corrections.

Remarks:

- includes many elliptically fibered threefolds.
- factorization structure greatly elucidated in $\mathcal{X} \subset \mathcal{A}$ cases.

A Concrete Example: Elliptic fibration over $d P_{2}$

Manifold, defined: the toric space \mathcal{A} and $\mathrm{CY} \mathcal{X} \subset \mathcal{A}$ are given by

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x	y	z	
\mathbb{C}^{*}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	6	9	0	M
\mathbb{C}^{*}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	4	6	0	N
\mathbb{C}^{*}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	4	6	0	O
\mathbb{C}^{*}	0	0	0	0	0	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	P

$$
S R I=\left\langle x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{5}, x_{4} x_{5}, x y z\right\rangle
$$

$\mathcal{X}=\left\{y^{2}=x^{3}+f\left(x_{i}\right) x z^{4}+g\left(x_{i}\right) z^{6}\right\} \quad \Leftarrow$ Weierstrass Equation
$I_{\mathcal{X}}=P\left(M N+M O-M P-N P-O P-M^{2}-N^{2}-O^{2}+7 P^{2}\right)$
Comment 1: note that $\left[D_{8}\right]=P$ factorizes out. $D_{8}=d P_{2}$ base! Comment 2: manifold used for semi-realistic GUT model.

Orientifold Involution: $\quad \sigma: x_{2} \mapsto-x_{2}$

Now consider: ED3 instanton on $D=m M+n N+o O+p P$ with $m, n, o, p \in \mathbb{Z}$.

Uncharged Modes: Necessary Constraint

$$
\begin{aligned}
\chi\left(D, \mathcal{O}_{D}\right)=-\frac{1}{6} & \left(3 m^{2} p-6 m n p+3 n^{2} p-6 m o p+3 o^{2} p+3 m p^{2}\right. \\
& \left.+3 n p^{2}+3 o p^{2}-7 p^{3}-6 m-6 n-6 o+p\right) \stackrel{?}{=} 1
\end{aligned}
$$

Absence of Charged Modes for Given D7, either:

- D doesn't intersect $D_{D 7}$. (sufficient)
- $D \cap D_{D 7}=\mathcal{C}=\mathbb{P}^{1} . \quad$ (necessary if $D \cap D_{D 7} \neq \emptyset$, not sufficient)
\rightsquigarrow in short, because $h^{i}\left(\mathbb{P}_{1}, \mathcal{O}(-1)\right)=(0,0)$. Not uncommon.

Non-intersection conditions:

$$
\begin{array}{llll}
D_{2} \cdot D=0 & \leftrightarrow & p=0 & o=2 p \\
D_{3} \cdot D=0 & \leftrightarrow & p=0 & m=n+o \\
D_{5} \cdot D=0 & \leftrightarrow & p=0 & m=n .
\end{array}
$$

Intersect at \mathbb{P}^{1} conditions:

$$
\begin{aligned}
& \chi\left(D \cdot D_{2}\right)=-2 p(o-p)=2-2 g \stackrel{\mathbb{P}^{1}}{=} 2 \\
& \chi\left(D \cdot D_{3}\right)=p(2 m-2 n-2 o+p+1)=2-2 g=2 \\
& \chi\left(D \cdot D_{5}\right)=-p(2 m-2 n-p-1)=2-2 g=2
\end{aligned}
$$

Solution: Restricts to finite set of contributing instantons.

Then $\chi\left(D, \mathcal{O}_{D}\right)=1 \Rightarrow$ only $D=P$ contributes to the uncharged superpotential.

This solution algorithm applies generically to compactifications satifying the above conditions.
\leadsto demonstrates "patchiness" of the landscape. \rightsquigarrow solves an interesting physical problem.

Other physical problems?

Study Chiral Matter Spectra:

- IIB, depends on topological data of \mathcal{X} and flux.
- but Calabi-Yau manifolds are fairly detailed . . . gets tedious
- can we specify less, which gains breadth, and still learn interesting things?

String Theoretic Constraints on Chiral Matter

to have tadpole cancellation and a massless $U(1)_{Y}$:
constraints on the homology of branes must be satisfied.

gives necessary constraints on chiral spectrum

- some are standard anomaly cancellation constraints.
\rightsquigarrow beautiful geometric picture of non-abelian cancellation.
- also some genuinely stringy constraints.
- holds across weakly coupled type II, RCFT, (maybe more?) [Cvetič, J.H., Richter]
[Anastasopoulos, Leontaris, Richter, Schellekens]

Key Point:

- use subset of vacuum data to learn as much as possible.
- rule out many D-brane quivers without specifying geometry.

Questions:

- Which matter fields beyond the MSSM (in given scenario) are preferred by chiral matter constraints (if any)?
- Which "preferences" are already present in field theory? Which are stringy (if any)?

Scenario: Three-stack quivers

 (first step, for simplicity)- realize on D-brane stacks a,b,c with $U(3)_{a} \times U(2)_{b} \times U(1)_{c}$
- hypercharge realized only as $U(1)_{Y}=\frac{1}{6} U(1)_{a}+\frac{1}{2} U(1)_{c}$

$$
\text { or } U(1)_{Y}=-\frac{1}{3} U(1)_{a}-\frac{1}{2} U(1)_{b}
$$

- First embedding is "Madrid embedding".

Strategy / Approach:

[Cvetič, J.H., Langacker], to appear

- write down all three-stack quivers with exact MSSM.
\rightsquigarrow even quivers which don't cancel tadpoles.
- write down all tadpole-cancelling matter additions (w/ $n_{\max }$).
- determine which matter additions leave hypercharge massless.
\rightsquigarrow prefer some types of matter over others?

Three-stack Madrid Embedding: Facts

- tadpoles take form $\operatorname{tad}_{a, b, c}=(0, \pm 2 n, 0)$ for $n \in\{0, \ldots, 7\}$.
- all exact MSSM quivers satisfy masslessness constraints.

Preliminary Results: Madrid Embedding

"Preferred" Matter Additions? (Tinker Toys)

- MSSM singlets \square_{b}, hypercharge-less $\operatorname{SU}(2)$ triplets $\bar{\square}_{b}$, and extra chiral Higgs pairs, e.g. $(\bar{b}, c)+(\bar{b}, \bar{c})$.
\rightsquigarrow don't contribute to masslessness condition, use as building blocks to cancel tadpoles.
\rightsquigarrow e.g., could add chiral Higgs pair + singlet to cancel $\operatorname{tad}_{b}=4$ $\Rightarrow S \widetilde{H}_{u} \widetilde{H}_{d}$ type coupling.

Matter Bounds:

- e.g. if just adding n_{S} chiral MSSM singlets, have $n_{S} \leq 7$.
- constraints on matter not present in field theory.

Singlet-Extended MSSM Quivers

[Cvetič, Halverson, Langacker] June 2010

Systematic Analysis of Three-Stack and Four-Stack Quivers. (along lines of [Cvetič, J.H., Richter](3), [Cvetič, J.H., Langacker, Richter])

Key addition: Add a singlet S with coupling $S H_{u} H_{d}$.

Constraints

- MSSM $+S$ or MSSM $+3 N_{R}+S$.
- necessary for tadpole cancellation and a massless $U(1)_{Y}$.
- many phenomenological constraints.
- $H_{u} H_{d}$ pert. and non-pert. forbidden, but $S H_{u} H_{d}$ present.
- $L H_{u} S$ is absent, so $S \neq N_{R}$.
- can generate S^{n} term without pheno. drawbacks.

Singlet-Extended MSSM Quivers

Results

- Only three quivers survive all constraints.
- Singlets realized as bifundamental of $U(1)$'s, rather than \square_{b}.
- "Model-independent" quivers:
- no S^{n} superpotential term is phenomenologically fixed.
\rightsquigarrow can in principle have $W \supset f(S), f$ a polynomial.
\rightsquigarrow all three quivers could in principle realize the nMSSM, S^{2} model, or NMSSM. Depends heavily on details of global embedding.

Summary

"Good approach" to study the landscape depends on:

- physics of interest.
\rightsquigarrow coarse-grained approach w/ subsets of vacuum data \Rightarrow non-trivial insights on broader patches of the landscape.
- issues of computability.
$\rightsquigarrow ~ " p a t c h y ", ~ a l g o r i t h m i c a l l y, ~ d u e ~ t o ~ r e l a t i o n ~ t o ~ n u m b e r ~ t h e o r y ~$ and the corresponding computability conjecture.

Gave two major examples.

Summary

Example One: All Instanton Corrections to Uncharged W

- new conjecture: for certain \mathbb{Z}_{2}-equivariant cohomology.

Solvable Patch: "Factorizing" Calabi-Yau Threefolds in IIB

- manifolds with a special divisor that participates in every non-zero triple intersection. i.e. $I_{\mathcal{X}}=D f_{2}$ for some D.
- includes many elliptically fibered threefolds.
- Key point: certain diophantine equations become linear \Rightarrow can solve for all instantons contributing to uncharged W.

Summary

Example Two: Semi-realistic Quivers in type II

- "coarse-grained" approach
- Stringy Constraints on Chiral Matter
- many quiver/matter additions might satisfy tadpole constraints, but which leave $U(1)_{Y}$ massless?

Three-stack Madrid Embedding:

- MSSM singlets, hyperchargeless $S U(2)$ triplets, chiral Higgs pairs are favored additions.
- string-theoretic "matter bounds", e.g. $n_{S} \leq 7$.

Constraints necessary for tadpole cancellation:

$$
\#(a)-\#(\bar{a})+\left(N_{a}-4\right) \#\left(\square_{a}\right)+\left(N_{a}+4\right) \#\left(\square_{a}\right)=0
$$

Constraints necessary for massless $U(1)_{Y}$:

$$
q_{a} N_{a}\left(\#\left(\square \square_{a}\right)+\#\left(\square_{a}\right)\right)=\sum_{x \neq a} q_{x} N_{x}(\#(a, \bar{x})-\#(a, x))
$$

