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•Warping plays an important role in string models: 

•Generation of the electroweak hiearchy [RS; GKP]

•Stabilization of moduli [KKLT;...]

•Late-time acceleration [KKLT;...] and inflation [KKLMMT;...]

•Gauge/gravity duality

•In type II theories, realistic models require open strings

•A 4D effective action is valuable for detailed 
phenomenology
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Motivation



•Alternatively, consider an        
F-theory compactification

•In such constructions must 
satisfy the D3-tadpole condition

•Additional ingredients will cause 
warping which will modify 4D 
EFT
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Motivation (cont.)
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•In a flat background, CFT techniques can be used to 
determine an EFT (Kähler metrics,Yukawa couplings 
[Lüst et. al.; Cvetic et. al.; Ibáñez et. al;...])
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Warped effective field theory

ˇ

•However, warping in type II 
usually involves Ramond-
Ramond fluxes and it is 
difficult to make use of CFT 
techniques



•Alternative: Dimensional 
reduction of a higher 
dimensional EFT

•Requires knowledge of 
wavefunctions of light 
degrees of freedom

•Here, my focus is on 
open string modes (see 
B. Underwood’s talk for 
closed strings)
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Warped effective field theory
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•For simplicity, compactify IIB on        
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Setup

F (5) = (1 + ∗10)F (5)
ext F (5)

ext = e4α ∧ dvolR1,3

ds210 = e2αdx2
4 + e−2αdzmdz̄m

•Add two probe D7 branes

T6 = T2
1 × T2

2 × T2
3

D71 : z3 = M3z
2

D72 : z3 = −M3z
2

•Gives a                     
gauge symmetry

U(1)×U(1)

e−2αe2α

e4α G(3) = 0
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•For a single D7-brane, the 4D bosonic d.o.f. are

•Gauge boson
•Wilson lines
•Worldvolume deformations
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Single D-brane
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Φ

•Dynamics described by the DBI+CS action
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•When the branes are coincident, the symmetry is 
enhanced to         . The transverse fluctuations are 
promoted to an adjoint-valued scalar
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Intersections as Higgsing 

U(2)
Φ

Φ =

�
φa φ−

φ+ φb

�
Position of Position ofD71 D72

-    strings (bifundamental)7271

φ−

φ+

•vevs for        correspond to background D7 positionsφa,b

�φa� = λ−1M3z
2

�
φb
�
= −λ−1M3z

2



•Bosonic fluctuations governed by the Myers action
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Myers action 

SD7 = SDBI
D7 + SCS
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•Bulk fields given as a non-Abelian Taylor expansion
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Myers action (cont.)

Ψ
�
Φ
�
=

∞�

n=0

λn

n!
Φi1 · · ·Φin∂i1 · · · ∂inΨ0

= Ψ0 +O (λ)

•Leading order in    , action is Higgsed warped Yang-Mills

•Equations of motion are second order and hard to solve in 
general

need small angle

α�

adjoint valued

neutral



•To get first order equations, can use fermionic action

•d.o.f. encoded in two 10D M-W spinors 

•Abelian case: [Martucci, Rosseel, Van denBleeken, Van Proeyen;...]
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Fermionic action
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•In a warped geometry (           ),
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Fermionic action (cont.)

SF
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g28
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•Non-Abelian modification (leading    ) [Wynants]:

and take trace
/∂ → /D δL = −iθ̄e−αΓi

�
Φi, θ

�
α�

DM = ∇M +
1

4
/F
(5)

ΓM O = 0

G(3) = 0

•After   -fixing κ



•Warping effect on adjoint zero-mode wavefunctions are 
mild
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Adjoint fields

Aµ ∼ const

Am ∼ const

φ ∼ const

ψ0 ∼ e−3α/2

ψ1,2 ∼ eα/2

ψ3 ∼ e−3α/2

Vector multiplet:
Wilson line multiplet:
Deformation multiplet:

Consistent with supersymmetry



•For the bifundamental modes, take the ansatz
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Equations of motion

ψ∓
0,3 = e−3α/2χ∓

0,3 ψ∓
1,2 = eα/2χ∓

1,2

0 =∂1χ
∓
1 + ∂2χ
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3 χ
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3
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gaugino, modulino wilsonini

•Equations of motion:

D∓
3 = ∓iM3z̄
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•For a single D7 brane, the equations of motion follow from 
F- and D-flatness conditions: [Jockers, Louis; Martucci] 
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BPS conditions
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•Comparing to the CS-action, the non-Abelian version 
should be (see also [Butti et. al.])
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•In the absence of warping, the zero modes are 
exponentially localized on the intersection
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Unwarped zero mode

4D field

ψ∓
0,1 =0

ψ∓
2 =σ∓�xµ

�
e−M3

��z2
��2

ψ∓
3 =± iσ∓�xµ

�
e−M3

��z2
��2

•Mixture of deformation modulus and Wilson line of the   
un-Higgsed theory



•For arbitrary warping, no simple analytic solution

•In the weak warping case, can treat the warping as a 
perturbation
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Warped zero mode

e−4α = 1 + �β � � 1

•Can then expand the warped zero mode in terms of the 
unwarped massive modes



•The equation of motion for the massive modes is
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Unwarped spectrum
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•Easiest to work in a rotated basis X�∓ = J−1X∓
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Unwarped spectrum (cont.)

−•    - sector modes built from ladder operators (giving two 
simple harmonic oscillator algebras) and Fourier modes
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Fourier mode

•Boundary conditions:
•Periodicity along
•Localized on intersection 

T2
1
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Unwarped spectrum (cont.)

•Unwarped spectrum:

m2
λ = m2 + n2 +M3
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�

m2
λ = m2 + n2 +M3

�
l + p+ 1

�

m2
λ = m2 + n2 +M3

�
l + p

�

m2
λ = m2 + n2 +M3

�
l + p+ 2

�

Φ�−
λ =

�
ϕ−
mnlp, 0, 0, 0

�

Φ�−
λ =

�
0,ϕ−

mnlp, 0, 0
�

Φ�−
λ =

�
0, 0,ϕ−

mnlp, 0
�

Φ�−
λ =

�
0, 0, 0,ϕ−

mnlp

�



24

Expanding the warped zero mode

•Write the warped zero mode as

X− = Φ−
0 +

�

λ

cλΦ
−
λ

•To leading order

D− = D−
0 + �βK− +O

�
�2
�where

•Examples given in [1011.xxxx]

unwarped modes
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Chirality

•Without magnetic flux, the spectrum is vector-like

•In order to have a chiral theory, the intersection must be 
magnetized

•SUSY requires [Marino, Minasian, Moore, Strominger; ...]

1
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Hodge-  on ∗ S4



27

Unwarped zero modes

•For example, if             , only the    -sector has zero 
modes

•Due to magnetic flux, wavefunction are quasi-periodic              
[Cremades, Ibáñez, Marchesano;...]
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Warped zero modes

•As in unmagnetized case, warped zero mode has no 
general simple analytic solution

•Again, expand in unwarped massive modes

•Spectrum built from three QSHO algebras
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Warped zero modes (cont.)

•Expand warped zero mode in terms of unwarped massive 
modes

then

Xj,− = Φj,−
0 +

�

k,λ

ckλΦ
k,−
λ

family mixing is generic

•Examples given in [1011.xxxx]
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Adjoint fields

•Recall the adjoint field wavefunctions

•The resulting 4D kinetic terms are

ψ0 ∼ e−3α/2 ψ1,2 ∼ eα/2 ψ3 ∼ e−3α/2
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1
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Chiral matter fields

•Warping modifications for chiral matter more complex

S = − 1

g28

�

W
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�
g̃ tr
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•         is the warped zero mode, not simply related to 
unwarped zero mode
Xj,∓
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Chiral matter fields (cont.)

•In the weak warping limit, the first order correction is

δK∓
jk̄

=
1

V

�

S4

d4y
�
Im τ

�−1�
χk,∓
3

�∗
βχj,∓

3 − δV
V

�
K∓

jk̄

�
0

unwarped

•Generic warp factors will introduce off-diagonal terms in 
the Kähler metric

•Second order corrections make use of warped 
wavefunctions (work in progress...)
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Summary and future directions

•Studied the wavefunctions for bifundamental matter in warped 
compactifications in both the chiral and non-chiral cases

•Needed to develop warped effective field theory and detailed 
phenomenology (though still work to be done!)

•Warping effects are more intricate than for adjoint matter; 
require a series expansion in unwarped massive modes

•General warp factors induce off-diagonal terms in the Kähler 
metric

•Extension to Calabi-Yau case is likely tricky...

•With a non-SUSY source (such as D3-branes), wavefunctions 
can be used to study soft terms (work in progress)


