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Phenomenology from the top-down

String theory has a very large number of consistent vacua (perhaps
infinite).

How do we find our vacuum in this large class?

Is there anything in the dynamics of string theory that makes
our vacuum special?
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Phenomenology from the top-down

Any attempt to answer these questions in detail presumably
requires knowledge of the low energy dynamics in each vacuum:

What are the light fields?

What is their effective action?

Many backgrounds in which these questions can be (partially)
answered are known (IIA intersecting branes, IIB large volume,
F-theory, M-theory, branes at singularities, heterotic, free fermions,
...). Presumably, many more are there but are still unknown.

A first step in approaching this question is one of computability.

What can we compute, even if it is just in principle?
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Defining “compute”

We want to understand which quantities are computable given:

A classical algorithm (something implementable in a
deterministic Turing machine).

Arbitrarily large, but finite, computing space/time.

These assumptions are too optimistic, but still do not seem enough
to tame the landscape: given enough complexity in the landscape,
some questions cannot be answered in such a way. We focus on
non-perturbative effects in large volume IIB compactifications.
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Large volume IIB backgrounds

Our motivation is studying computability, so we need
configurations where we have as much control as possible (without
being trivial): complete intersections in ambient toric spaces.

In order to construct Calabi-Yau spaces we take hypersurfaces in
A, defined by some equation (or system of equations) f(xi) = 0 of
appropriate degree.

Generality

The Calabi-Yau threefolds obtained by taking a hypersurface
f(xi) = 0 in a 4d ambient space have been classified by Kreuzer
and Skarke. There are at least ≈ 3 · 104 of these (at most
≈ 5 · 108). The generic class is expected to be much larger.
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Large volume N = 1 compactifications

In order to construct a semi-realistic background we need to add
an open string sector. We introduce O7− planes by quotienting A
by involutions of the form:

xi 7→ ±xi (1)

This gives rise to a fixed point locus in X given by the intersection
of f = 0 and x1 = 0 in A.

D7 branes can then be introduced by specifying which divisors they
wrap, making sure that there are no anomalies.

Easily lifted to F-theory: [Collinucci (2); Blumenhagen, Grimm, Jurke,

Weigand; Blumenhagen, Collinucci, Jurke; Cvetič, I.G.E., Halverson]
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D-brane instantons

In this class of compactifications, the relevant
non-perturbative F-terms come from euclidean
D3 branes. That is, D3 branes wrapping a
(holomorphic) 4-cycle in X, and point-like in
spacetime.

We restrict ourselves to instantons which do
not admit a gauge theory description.

The most important property of a D-brane instanton is its
spectrum of zero modes:

Neutral zero modes: coming from ED3-ED3 strings.

Charged zero modes: coming from ED3-D7 strings.
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D-brane instantons
Neutral zero modes

Consider an instanton wrapping a divisor D mapped to itself (not
pointwise) under the O7− orientifold action. The gauge group on
its worldvolume is O(1) = Z2.

Its spectrum of zero modes is given by [Blumenhagen, Cvetič,
Kachru, Weigand; Blumenhagen, Collinucci, Jurke]:

Zero modes Number
(Xµ, θ

α) h0+(D,OD) = 1
τ α̇ h0−(D,OD) = 0
γα h1+(D,OD)

(ω, γα̇) h1−(D,OD)
χα h2+(D,OD)

(c, χα̇) h2−(D,OD)

(Generically fermions are the most important modes.)
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D-brane instantons
Necessary conditions for contributing to the superpotential

Superpotential contributions are particularly interesting in
phenomenological applications. An instanton contributing to the
superpotential has exactly two neutral zero modes θα. I.e., we
need:

hi±(D,OD) = 0 (2)

for i > 0, and also:

h0+ = 1. (3)
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D-brane instantons
Necessary conditions for contributing to the superpotential

This gives a couple of useful conditions. Notice that for an
instanton contributing to the superpotential, since only
h0+(D,OD) = 1 is non-vanishing:

2∑
i=0

(−1)i(hi+(D,OD)± hi−(D,OD)) = 1 (4)

These sums are actually indices, and can be computed
topologically. For the + sign (GRR):

2∑
i=0

(−1)i(hi+(D,OD) + hi−(D,OD)) =
∫
D
Td(TD) (5)

and for the minus sign (Lefschetz):

2∑
i=0

(−1)i(hi+(D,OD)− hi−(D,OD)) =
∫
Mσ

Td(TMσ)

chσ(∧−1NMσ)
(6)
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D-brane instantons
Necessary conditions for contributing to the superpotential

Writing the divisor D in terms of a basis of divisors Di:
D =

∑
diDi, we have that the index formulas give rise to

diophantine equations. For example:

1 =

∫
D
Td(TD) = aijkdidjdk + bijdidj + cidi (7)

with a, b, c depending on the particular geometry we choose.

This is a first hint of the connection between instanton dynamics
and number theory/computability.
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General discussion

In general we are interested in computing things other than
superpotentials, i.e. generic F-terms, so we need to compute all
h•±(D,OD).

In order to do this, we can use the Koszul resolution, relating
cohomology of X to cohomology of A:

0→ H0(A,OA(D −X))→ H0(A,OA(D))→ H0(X,OX(D))→
→ H1(A,OA(D −X))→ H1(A,OA(D))→ H1(X,OX(D))→ . . .

(8)

For toric varieties we know how to compute line bundle cohomology
systematically [Cox,Little,Schenck], [Cvetič, I.G.-E., Halverson] (and
efficiently [Blumenhagen, Jurke, Rahn, Roschy; Jow; Rahn, Roschy]).

Equivariant version: [Cvetič, I.G.-E., Halverson; Blumenhagen, Jurke,

Rahn, Roschy]
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Computability and diophantine equations

The simplest question that we can pose about a diophantine
equation is: “Does it have a solution?”. (In our context: “is there
some instanton that satisfies the given necessary condition on its
zero modes?”)

Hilbert’s 10th problem

Construct an algorithm that, given an arbitrary diophantine
equation, determines in finite time whether it has a solution.

Physically, if we had a way of computing non-perturbative F-terms
for an arbitrary compactification, we would have a way of
determining if a large class of diophantine equations have solutions.

If the landscape is rich enough, we are effectively solving Hilbert’s
10th problem.
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Computability and diophantine equations

Matiyasevich’s solution to Hilbert’s 10th problem

No such algorithm can exist.
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Computability and diophantine equations

This strongly suggests that there is no systematic algorithm for
computing non-perturbative F-terms in a generic string theory
vacuum.

Still, we need to be more precise: the index formulas are only
necessary conditions, generically we are interested in asking
questions that require knowledge of the exact spectrum of zero
modes.

We show that the set of string vacua for which a given
non-perturbative effect is present is recursively enumerable inside
the set of all string vacua.
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Recursively enumerable sets

Definition

A subset S0 ⊂ S is recursively enumerable if there exists some
algorithm that, given x ∈ S, halts iff x ∈ S0.

(Roughly: recursively enumerable ≈ computable, but may take
infinite time to find the answer.)
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Recursive sets

Definition

A subset S0 ⊂ S is recursive (or computable) if there exists some
algorithm that, given x ∈ S, determines in finite time whether
x ∈ S0.

We conjecture that SP is not recursive. I.e., there is no way of
computing non-perturbative F-terms systematically across the
whole landscape.
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The string theory landscape
Evidence for the conjecture

Theorem (Matiyasevich)

A subset is recursively enumerable iff it is diophantine.

So we can view the problem of computability in the string theory
landscape as an specialization of Hilbert’s 10th problem to the set
of diophantine equations arising in string theory.

The larger the landscape, and the larger the set of properties we
want to compute, the more likely that the negative solution of
Hilbert’s 10th problem applies to us.
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The string theory landscape
Related results

Turing’s resolution of the halting problem.

Some problems involving dynamics in the landscape are
known to be NP-complete [Denef,Douglas].

Simple statements about toy models of dynamics in the landscape
are unprovable in ZFC [Williamson].
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Conclusions

There is a very interesting computability structure behind
non-perturbative effects in string theory, also very related to
number theory.

It suggests that there is no algorithmic way of computing
non-perturbative F-terms across the whole landscape.

If the conjecture is true, the landscape is inherently “patchy”
(and never fully calculable).

The viewpoint seems to be useful also for applications: elliptic
fibrations. [See Jim’s talk.]
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Physical implications
How do we compute in the landscape?

For practical calculations, we do not need the exact F-terms, so we
can just truncate the instanton numbers.

Can we do better in general than straightforward scans?

How to describe the dynamics of string theory?
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Open questions

Extend and generalize the discussion to other corners of the
landscape.

Use more powerful techniques in number theory for analyzing
the resulting diophantine equations (elliptic curves, for
example).

Prove non-computability (case by case...).

Formulate a computational model suitable for the physics on
the landscape (non-deterministic Turing machine?).
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