Systematic Investigations of the Free Fermionic Heterotic String Landscape SVP Fall Meeting 2010

Timothy Renner

Baylor University

November 5, 2010

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Free fermionic heterotic string construction.
- Why systematic studies?
- Redundancies and floating correlations.
- The D=10 heterotic string landscape.
- The D=8, D=6 heterotic string landscape.
- The NAHE Set and NAHE Variation.
- Interesting models.
- Future work.

 Fully mapping the input space to the output space allows for an understanding of fundamental redundancies of the construction method.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

 Fully mapping the input space to the output space allows for an understanding of fundamental redundancies of the construction method.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• It allows for "exotic" models to be constructed.

- Fully mapping the input space to the output space allows for an understanding of fundamental redundancies of the construction method.
- It allows for "exotic" models to be constructed.
- It details the limits of a particular construction method, which aids searches in other parts of the landscape.

- Fully mapping the input space to the output space allows for an understanding of fundamental redundancies of the construction method.
- It allows for "exotic" models to be constructed.
- It details the limits of a particular construction method, which aids searches in other parts of the landscape.
- Fits into the goals of the string vacuum project as a whole : "The mission of the SVP is to bring together experts in string theory and string phenomenology with experts in pure and computational mathematics to concentrate efforts on understanding the systematic features of string vacua."

• **Basis vectors** - phases that fermion modes gain when parallel transported around non-contractible loops of space-time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **Basis vectors** phases that fermion modes gain when parallel transported around non-contractible loops of space-time.
- **GSO coefficient matrix**, or *k_{ij}* matrix degree of freedom to choose which states to truncate from the model.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- **Basis vectors** phases that fermion modes gain when parallel transported around non-contractible loops of space-time.
- **GSO coefficient matrix**, or *k_{ij}* matrix degree of freedom to choose which states to truncate from the model.

• Order - the allowable phases the modes can have.

- **Basis vectors** phases that fermion modes gain when parallel transported around non-contractible loops of space-time.
- **GSO coefficient matrix**, or *k_{ij}* matrix degree of freedom to choose which states to truncate from the model.

- Order the allowable phases the modes can have.
- Layer the number of basis vectors specifying a model.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Basis Vectors

• Left Movers - Order 2, obey SU(2)⁶ WS SUSY current.

• Left Movers - Order 2, obey SU(2)⁶ WS SUSY current.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Right Movers - Order N bosonic string.

- Left Movers Order 2, obey SU(2)⁶ WS SUSY current.
- Right Movers Order N bosonic string.
- The total number of modes depends on the number of large space-time dimensions.

- Left Movers Order 2, obey SU(2)⁶ WS SUSY current.
- Right Movers Order N bosonic string.
- The total number of modes depends on the number of large space-time dimensions.
- Generally, for D large space-time dimensions, there will be D-2 real space-time fermion modes in complex pairs ψ, ψ*, and 10-D triplets of real fermion modes (x, y, w) for the left movers.

- Left Movers Order 2, obey SU(2)⁶ WS SUSY current.
- Right Movers Order N bosonic string.
- The total number of modes depends on the number of large space-time dimensions.
- Generally, for D large space-time dimensions, there will be D-2 real space-time fermion modes in complex pairs ψ, ψ*, and 10-D triplets of real fermion modes (x, y, w) for the left movers.
- There are 32 real fermion modes in complex pairs from the D=10 bosonic string, $\bar{\psi}^{1,1^*,\dots,5,5^*}$, $\bar{\eta}^{1,1^*,\dots,3,3^*}$, $\bar{\phi}^{1,1^*,\dots,8,8^*}$.

- Left Movers Order 2, obey SU(2)⁶ WS SUSY current.
- Right Movers Order N bosonic string.
- The total number of modes depends on the number of large space-time dimensions.
- Generally, for D large space-time dimensions, there will be D-2 real space-time fermion modes in complex pairs ψ, ψ*, and 10-D triplets of real fermion modes (x, y, w) for the left movers.
- There are 32 real fermion modes in complex pairs from the D=10 bosonic string, $\bar{\psi}^{1,1^*,\dots,5,5^*}$, $\bar{\eta}^{1,1^*,\dots,3,3^*}$, $\bar{\phi}^{1,1^*,\dots,8,8^*}$.
- There are 2(10-D) real fermion modes which are bosonic contributions from compactifications, y
 ^{1,...,10-D}, w
 ^{1,...,10-D}.

• Several redundancies are present in the heterotic construction which are well known.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Several redundancies are present in the heterotic construction which are well known.
 - **Reordering** fermion modes can be reordered as long as the same modes for other layers have the same values.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Several redundancies are present in the heterotic construction which are well known.
 - **Reordering** fermion modes can be reordered as long as the same modes for other layers have the same values.
 - **Charge conjugation** if there are no other basis vectors with complex phases, then a basis vector with phases equal to the conjugates will produce the same model.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Several redundancies are present in the heterotic construction which are well known.
 - **Reordering** fermion modes can be reordered as long as the same modes for other layers have the same values.
 - **Charge conjugation** if there are no other basis vectors with complex phases, then a basis vector with phases equal to the conjugates will produce the same model.
 - **Permutations** Sets of matching boundary conditions can, in some cases, be permuted.

- Several redundancies are present in the heterotic construction which are well known.
 - **Reordering** fermion modes can be reordered as long as the same modes for other layers have the same values.
 - **Charge conjugation** if there are no other basis vectors with complex phases, then a basis vector with phases equal to the conjugates will produce the same model.
 - **Permutations** Sets of matching boundary conditions can, in some cases, be permuted.

• *SO*(*n*) **Rotations** - Basis vectors with different numbers of periodic modes can produce identical models.

Floating Correlations

• **floating correlation** - statistical correlations become a function of sample size due to the mapping of the input space to the model space not being one-to-one.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Floating Correlations

- **floating correlation** statistical correlations become a function of sample size due to the mapping of the input space to the model space not being one-to-one.
- Studying and reducing the redundancies inherent to the input space is a crucial step towards true random sampling, and can only be completely done with a thorough, systematic study of the landscape.

D=10 Landscape Systematic Search Inputs

- Basis Vector Schematic: $(\psi^{1,1^*,\dots,4,4^*} \mid\mid \bar{\psi}^{1,1^*,\dots,5,5^*} \bar{\eta}^{1,1^*,\dots,3,3^*} \bar{\phi}^{1,1^*,\dots,8,8^*})$
- SUSY basis vector ('S' vector): $(\vec{1}^8 \parallel \vec{0}^{32})$.

D=10 Landscape Systematic Search Inputs

- Basis Vector Schematic: $(\psi^{1,1^*,\dots,4,4^*} \mid\mid \bar{\psi}^{1,1^*,\dots,5,5^*} \bar{\eta}^{1,1^*,\dots,3,3^*} \bar{\phi}^{1,1^*,\dots,8,8^*})$
- SUSY basis vector ('S' vector): $(\vec{1}^8 \parallel \vec{0}^{32})$.
- Performed the following searches with an additional S vector: Order 2,4.
- Performed without the S vector: Order 3.

D=10 Landscape Systematic Search Inputs

- Basis Vector Schematic: $(\psi^{1,1^*,\dots,4,4^*} \mid\mid \bar{\psi}^{1,1^*,\dots,5,5^*} \bar{\eta}^{1,1^*,\dots,3,3^*} \bar{\phi}^{1,1^*,\dots,8,8^*})$
- SUSY basis vector ('S' vector): $(\vec{1}^8 \parallel \vec{0}^{32})$.
- Performed the following searches with an additional S vector: Order 2,4.
- Performed without the S vector: Order 3.
- All searches were performed first without changing the GSO coefficient matrix.

D=10, Order 2, Layer 1 Landscape

QTY	<i>SO</i> (4)	<i>SO</i> (24)
1	8	24

N=0 ST SUSY

QTY	<i>SO</i> (16)	<i>SO</i> (16)
1	128	1
1	1	128

N=0 ST SUSY

D=10, Order 2, Layer 1 Landscape

QTY	<i>SO</i> (4)	<i>SO</i> (24)
1	8	24

QTY	<i>SO</i> (16)	<i>SO</i> (16)
1	128	1
1	1	128

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

N=0 ST SUSY

N=0 ST SUSY

Two unique models, three "distinct" basis vectors.

D=10, Order 2 Landscape Map

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

D=10, Order 2, 1 Layer GSO Coefficient Mappings

Diagram of the D=10, Order 2, 1 Layer Landscape

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The D=10, Order 3, 1 Layer Landscape

SO(32), N=0 ST SUSY

$E_8 \otimes E_8$, N=0 ST SUSY

SO(32), N=1 ST SUSY

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The D=10, Order 3, 1 Layer Landscape

SO(32), N=0 ST SUSY

$E_8 \otimes E_8$, N=0 ST SUSY

SO(32), N=1 ST SUSY

Three unique models, three distinct basis vectors.

Mapping of the D=10, Order 3, Layer 1 Landscape

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Diagram of the D=10, Order 3, Layer 1 Landscape

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Diagram of the D=10, Order 3, Layer 1 Landscape

D=10, Order 4, Layer 1 Landscape

QTY	<i>SU</i> (2)	<i>SU</i> (2)	<i>E</i> ₇	<i>E</i> ₇
1	2	1	1	56
1	1	2	56	1

QTY	<i>SO</i> (16)	<i>SO</i> (16)
1	128	1
1	1	128

N=0 ST SUSY

N=0 ST SUSY

QTY	<i>SU</i> (16)
2	120

SO(8)

8

SO(24)

24

QTY	<i>SO</i> (16)	<i>SO</i> (16)
1	16	16

N=0 ST SUSY

N=0	SΤ	SUSY	
-----	----	------	--

~	00(10)
2	120

N=0	ST	SUSY
	<u> </u>	505.

N=0 ST SUSY

QTY

QTY	<i>SO</i> (16)	E ₈	
1	128	1]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

D=10, Order 4, Layer 1 Landscape

QTY	<i>SU</i> (2)	<i>SU</i> (2)	<i>E</i> ₇	<i>E</i> ₇
1	2	1	1	56
1	1	2	56	1

QTY	<i>SO</i> (16)	<i>SO</i> (16)
1	128	1
1	1	128

N=0 ST SUSY

N=0 ST SUSY

QTY	<i>SU</i> (16)
2	120

N=0 ST SUSY

QTY	<i>SO</i> (8)	<i>SO</i> (24)
1	8	24

 QTY
 SO(16)
 SO(16)

 1
 16
 16

N=0 ST SUSY

QTY	<i>SO</i> (16)	E ₈
1	128	1

N=0 ST SUSY

N=0 ST SUSY

There are 6 distinct models produced by 14 "distinct" basis vectors.

Diagram of the D=10, Order 4, Layer 1 Landscape

Diagram of the D=10, Order 4, Layer 1 Landscape

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへ⊙

D=8 Landscape Systematic Search Inputs

- Basis Vector schematic: $(\psi^{1,1^*,\dots,3,3^*} (x \ y \ z)^{1,2} || \ \overline{\psi}^{1,1^*,\dots,5,5^*} \ \overline{\eta}^{1,1^*,\dots,3,3^*} \ \overline{y}^{1,2} \ \overline{w}^{1,2} \ \overline{\phi}^{1,1^*,\dots,8,8^*})$
- SUSY basis vector ('S' vector): $(\vec{1}^6 (1 \ 0 \ 0)^2 \parallel \vec{0}^{36})$.

D=8 Landscape Systematic Search Inputs

- Basis Vector schematic: $(\psi^{1,1^*,\dots,3,3^*} (x \ y \ z)^{1,2} || \ \overline{\psi}^{1,1^*,\dots,5,5^*} \ \overline{\eta}^{1,1^*,\dots,3,3^*} \ \overline{y}^{1,2} \ \overline{w}^{1,2} \ \overline{\phi}^{1,1^*,\dots,8,8^*})$
- SUSY basis vector ('S' vector): $(\vec{1}^6 (1 \ 0 \ 0)^2 \parallel \vec{0}^{36})$.
- Order 2, 4 with S vector.
- Order 3 without S vector.

D=8 Landscape Systematic Search Inputs

- Basis Vector schematic: $(\psi^{1,1^*,\dots,3,3^*} (x \ y \ z)^{1,2} || \ \overline{\psi}^{1,1^*,\dots,5,5^*} \ \overline{\eta}^{1,1^*,\dots,3,3^*} \ \overline{y}^{1,2} \ \overline{w}^{1,2} \ \overline{\phi}^{1,1^*,\dots,8,8^*})$
- SUSY basis vector ('S' vector): $(\vec{1}^6 (1 \ 0 \ 0)^2 \parallel \vec{0}^{36})$.
- Order 2, 4 with S vector.
- Order 3 without S vector.
- All searches performed without changing the GSO coefficient matrix.

D=8, Order 2, 1 Layer Landscape Statistics

Gauge Group	N	%
<i>SU</i> (2)	1	14.3
<i>SO</i> (8)	1	14.3
<i>SO</i> (10)	1	14.3
<i>SO</i> (12)	1	14.3
<i>SO</i> (16)	1	14.3
<i>SO</i> (18)	1	14.3
<i>SO</i> (20)	1	14.3
<i>SO</i> (24)	1	14.3
<i>SO</i> (26)	1	14.3
<i>SO</i> (28)	1	14.3
<i>SO</i> (32)	1	14.3
SO(34)	1	14.3

Total models: 242

Unique models: 7

Average BVs per unique model: 34.6

Models with N=0 ST SUSY: 7

D=8, Order 3, 1 Layer Landscape Statistics

Total models: 4,049

Unique models: 5

Average BVs per unique model: 809.8

Models with N=1 ST SUSY: 5

・ロト ・ 雪 ト ・ ヨ ト

э.

Gauge Group	N	%
<i>SU</i> (2)	1	20.0
<i>SU</i> (4)	1	20.0
<i>SU</i> (16)	1	20.0
<i>SU</i> (18)	1	20.0
<i>SO</i> (12)	1	20.0
<i>SO</i> (20)	1	20.0
SO(24)	1	20.0
<i>SO</i> (36)	1	20.0
E ₈	1	20.0

D=8, Order 4, 1 Layer Landscape Statistics

Gauge Group	N	%
<i>SU</i> (2)	10	27.0
<i>SU</i> (4)	10	27.0
<i>SU</i> (8)	6	16.2
<i>SU</i> (12)	7	18.9
<i>SU</i> (16)	4	10.8
<i>SU</i> (18)	1	2.7
<i>SO</i> (8)	4	10.8
<i>SO</i> (10)	6	16.2
SO(12)	4	10.8
<i>SO</i> (14)	2	5.4
<i>SO</i> (16)	5	13.5
<i>SO</i> (18)	4	10.8
<i>SO</i> (20)	4	10.8
<i>SO</i> (22)	1	2.7
<i>SO</i> (24)	1	2.7
<i>SO</i> (26)	3	8.1
<i>SO</i> (32)	1	2.7
<i>SO</i> (34)	1	2.7
<i>SO</i> (36)	1	2.7
E ₆	1	2.7
E ₇	3	8.1
<i>E</i> ₈	1	2.7

Total models: 11,104

Unique models: 37

Average BVs per unique model: 300.1

Models with

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

D=6 Landscape Systematic Search Inputs

- Basis vector LM: $(\psi^{1,1^*,2,2^*} (x \ y \ z \)^{1,...,4})$
- Basis vector RM: $(\bar{\psi}^{1,1^*,\dots,5,5^*} \ \bar{\eta}^{1,1^*,\dots,3,3^*} \ \bar{y}^{1,\dots,4} \ \bar{w}^{1,\dots,4} \ \bar{\phi}^{1,1^*,\dots,8,8^*})$
- SUSY basis vector ('S' vector): $(\vec{1}^4 (1 \ 0 \ 0)^4 \parallel \vec{0}^{40})$.

D=6 Landscape Systematic Search Inputs

- Basis vector LM: $(\psi^{1,1^*,2,2^*} (x \ y \ z \)^{1,...,4})$
- Basis vector RM: $(\bar{\psi}^{1,1^*,...,5,5^*} \ \bar{\eta}^{1,1^*,...,3,3^*} \ \bar{y}^{1,...,4} \ \bar{w}^{1,...,4} \ \bar{\phi}^{1,1^*,...,8,8^*})$
- SUSY basis vector ('S' vector): $(\vec{1}^4 (1 \ 0 \ 0)^4 \parallel \vec{0}^{40})$.
- Orders 2, 4 with S vector.
- Order 3 with and without S vector.

D=6 Landscape Systematic Search Inputs

- Basis vector LM: $(\psi^{1,1^*,2,2^*} (x \ y \ z \)^{1,...,4})$
- Basis vector RM: $(\bar{\psi}^{1,1^*,\dots,5,5^*} \ \bar{\eta}^{1,1^*,\dots,3,3^*} \ \bar{y}^{1,\dots,4} \ \bar{w}^{1,\dots,4} \ \bar{\phi}^{1,1^*,\dots,8,8^*})$
- SUSY basis vector ('S' vector): $(\vec{1}^4 (1 \ 0 \ 0)^4 \parallel \vec{0}^{40})$.
- Orders 2, 4 with S vector.
- Order 3 with and without S vector.
- All searches performed without changing the GSO coefficient matrix.

D=6, Order 2, 1 Layer Landscape Statistics

Gauge Group	N	%
<i>SU</i> (2)	1	6.3
<i>SU</i> (4)	1	6.3
<i>SO</i> (8)	3	18.8
<i>SO</i> (10)	1	6.3
<i>SO</i> (12)	1	6.3
<i>SO</i> (14)	1	6.3
SO(16)	3	18.8
<i>SO</i> (18)	1	6.3
<i>SO</i> (20)	1	6.3
SO(22)	1	6.3
<i>SO</i> (24)	3	18.8
<i>SO</i> (26)	1	6.3
<i>SO</i> (28)	1	6.3
<i>SO</i> (30)	1	6.3
<i>SO</i> (32)	3	18.8
<i>SO</i> (34)	1	6.3
<i>SO</i> (36)	1	6.3
<i>SO</i> (38)	1	6.3
<i>SO</i> (40)	2	12.5

Total models: 3,248

Unique models: 16

Average BVs per unique model: 203

Models with

- N=0 ST SUSY: 15
- N=2 ST SUSY: 1

・ロト ・ 一下・ ・ モト ・ モト・

э.

D=6, Order 3, 1 Layer Landscape Statistics

Gauge Group	N	%
<i>SU</i> (2)	5	7.7
<i>SU</i> (3)	1	1.5
<i>SU</i> (4)	2	3.1
<i>SU</i> (5)	1	1.5
<i>SU</i> (6)	1	1.5
<i>SU</i> (7)	1	1.5
<i>SU</i> (8)	1	1.5
<i>SU</i> (9)	1	1.5
<i>SU</i> (10)	1	1.5
SU(11)	1	1.5
SU(12)	1	1.5
<i>SU</i> (13)	1	1.5
<i>SU</i> (14)	1	1.5
<i>SU</i> (15)	1	1.5
<i>SU</i> (16)	3	4.6
SU(17)	1	1.5
<i>SU</i> (18)	4	6.2
SU(19)	1	1.5

Gauge Group	N	%
<i>SO</i> (8)	1	1.5
SO(10)	5	7.7
SO(12)	1	1.5
<i>SO</i> (14)	1	1.5
SO(16)	13	20.0
SO(18)	2	3.1
<i>SO</i> (20)	8	12.3
SO(22)	16	24.6
SO(24)	6	9.2
<i>SO</i> (26)	1	1.5
<i>SO</i> (28)	1	1.5
<i>SO</i> (30)	1	1.5
<i>SO</i> (32)	5	7.7
<i>SO</i> (34)	2	3.1
<i>SO</i> (36)	13	20.0
<i>SO</i> (38)	1	1.5
<i>SO</i> (40)	2	3.1
E ₈	2	3.1

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

・ロト ・聞ト ・ヨト ・ヨト

3

D=6, Order 3, 1 Layer Landscape Statistics

Total models: 81,752

Unique models: 65

Average BVs per unique model: 1,257.7

Models with

- N=0 ST SUSY: 60
- N=2 ST SUSY: 5

The NAHE Set

QTY	<i>SU</i> (4)	<i>SU</i> (4)	<i>SU</i> (4)	<i>SO</i> (10)	<i>E</i> ₈
2	4	1	1	16	1
2	1	4	1	16	1
2	1	1	4	16	1
2	1	1	4	16	1
1	1	1	6	10	1
2	1	4	1	16	1
1	1	6	1	10	1
1	1	6	6	1	1
2	4	1	1	16	1
1	6	1	1	10	1
1	6	1	6	1	1
1	6	6	1	1	1

Total Matter Representations: 18

Number of ST SUSYs: 1 . (B) (B) (B) (B) (B) (C)

Exotic Order 3 Model 1

NAHE extension with S vector.

- NAHE extension with S vector.
- LM: $(1, 1) (0, 1, 0)^4 (1, 0, 0)^2$
- RM:
 - $\bar{\psi}, \ \bar{\eta}: \ (\frac{2}{3}^{10}) \ (0^2, \ \frac{2}{3}^2, \ 0^2)$
 - $\bar{y}, \ \bar{w}: \ \left(\frac{2}{3}, \ 0^3, \ \frac{2}{3}^2\right) \left(0^2, \ \frac{2}{3}^2, \ 0, \ \frac{2}{3}\right)$
 - $\bar{\phi}$: $(0^4, \frac{2}{3}^{12})$

- NAHE extension with S vector.
- LM: $(1, 1) (0, 1, 0)^4 (1, 0, 0)^2$
- RM:
 - $\bar{\psi}, \ \bar{\eta}: \ (\frac{2}{3}^{10}) \ (0^2, \ \frac{2}{3}^2, \ 0^2)$
 - $\bar{y}, \ \bar{w}: \ \left(\frac{2}{3}, \ 0^3, \ \frac{2}{3}^2\right) \left(0^2, \ \frac{2}{3}^2, \ 0, \ \frac{2}{3}\right)$
 - $\bar{\phi}$: $(0^4, \frac{2}{3}^{12})$
- Gauge groups: $SU(2)^4 \otimes SU(5)^2 \otimes E_6$
- Total matter representations: 36

- NAHE extension with S vector.
- LM: $(1, 1) (0, 1, 0)^4 (1, 0, 0)^2$
- RM:
 - $\bar{\psi}, \ \bar{\eta}: \ (\frac{2}{3}^{10}) \ (0^2, \ \frac{2}{3}^2, \ 0^2)$

•
$$\bar{y}, \ \bar{w}: \ \left(\frac{2}{3}, \ 0^3, \ \frac{2}{3}^2\right) \ \left(0^2, \ \frac{2}{3}^2, \ 0, \ \frac{2}{3}\right)$$

- $\bar{\phi}$: $(0^4, \frac{2}{3}^{12})$
- Gauge groups: $SU(2)^4 \otimes SU(5)^2 \otimes E_6$
- Total matter representations: 36
- N=2 ST SUSY

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exotic Order 3 Model 2

NAHE extension without S vector.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- NAHE extension without S vector.
- LM: (1, 1) (1, 0, 0)⁶
- RM:
 - $\bar{\psi}, \ \bar{\eta}: \ (\frac{2}{3}^{10}) \ (0^2, \ \frac{2}{3}^4)$
 - $\bar{y}, \ \bar{w}: \ \left(\frac{2}{3}^2, \ 0^2, \ \frac{2}{3}^2\right) \left(\frac{2}{3}^4, \ \frac{2}{3}^2\right)$
 - $\bar{\phi}$: $(0^4, \frac{2}{3}^{12})$

- NAHE extension without S vector.
- LM: (1, 1) (1, 0, 0)⁶
- RM:
 - $\bar{\psi}, \ \bar{\eta}: \ (\frac{2}{3}^{10}) \ (0^2, \ \frac{2}{3}^4)$
 - $\bar{y}, \ \bar{w}: \ \left(\frac{2}{3}^2, \ 0^2, \ \frac{2}{3}^2\right) \left(\frac{2}{3}^4, \ \frac{2}{3}^2\right)$
 - $\bar{\phi}$: $(0^4, \frac{2}{3}^{12})$
- Gauge groups: $SU(2)^2 \otimes SU(3)^2 \otimes SU(4) \otimes SU(5) \otimes E_6$
- Total matter representations: 44

- NAHE extension without S vector.
- LM: (1, 1) (1, 0, 0)⁶
- RM:
 - $\bar{\psi}, \ \bar{\eta}: \ (\frac{2}{3}^{10}) \ (0^2, \ \frac{2}{3}^4)$

•
$$\bar{y}, \ \bar{w}: \ \left(\frac{2}{3}^2, \ 0^2, \ \frac{2}{3}^2\right) \left(\frac{2}{3}^4, \ \frac{2}{3}^2\right)$$

- $\bar{\phi}$: $(0^4, \frac{2}{3}^{12})$
- Gauge groups: $SU(2)^2 \otimes SU(3)^2 \otimes SU(4) \otimes SU(5) \otimes E_6$
- Total matter representations: 44
- N=1 ST SUSY

- NAHE extension without S vector.
- LM: (1, 1) (1, 0, 0)⁶
- RM:
 - $\bar{\psi}, \ \bar{\eta}: \ (\frac{2}{3}^{10}) \ (0^2, \ \frac{2}{3}^4)$

•
$$\bar{y}, \ \bar{w}: \ \left(\frac{2}{3}^2, \ 0^2, \ \frac{2}{3}^2\right) \left(\frac{2}{3}^4, \ \frac{2}{3}^2\right)$$

- $\bar{\phi}$: $(0^4, \frac{2}{3}^{12})$
- Gauge groups: $SU(2)^2 \otimes SU(3)^2 \otimes SU(4) \otimes SU(5) \otimes E_6$
- Total matter representations: 44
- N=1 ST SUSY
- Three U(1)'s make the total rank 22, and make two sets of SM gauge groups.

Differences Between the NAHE Set and NAHE Variation

NAHE Set

0	$ar{\eta}^{1,2}$	$ar{\eta}^{3,4}$	$ar{\eta}^{5,6}$	$\bar{y}^{1,2}$	$\bar{y}^{3,4}$	$\bar{y}^{5,6}$	$\bar{w}^{1,2}$	$\bar{w}^{3,4}$	$\bar{w}^{5,6}$
	1	0	0	0	1	1	0	0	0
	0	1	0	1	0	0	0	0	1
	0	0	1	0	0	0	1	1	0

NAHE Variation

$\bar{\eta}^{1,2}$	$\bar{\eta}^{3,4}$	$ar{\eta}^{5,6}$	$\bar{y}^{1,2}$	$\bar{y}^{3,4}$	$\bar{y}^{5,6}$	$\bar{w}^{1,2}$	$\bar{w}^{3,4}$	$\bar{w}^{5,6}$
1	0	0	0	1	1	0	0	0
0	1	0	1	0	1	0	0	0
0	0	1	1	1	0	0	0	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The NAHE Variation

QTY	<i>SO</i> (22)	E ₆
15	1	27
90	1	1
15	1	27
30	22	1

Total Matter Representations: 150

Number of ST SUSYs: 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mirror Model 1

QTY	<i>SO</i> (11)	<i>SO</i> (11)	<i>SO</i> (10)
88	1	1	1
12	1	1	10
20	1	1	16
16	1	11	1
2	1	32	1
16	11	1	1
1	11	11	1
2	32	1	1

Total Matter Representations: 157

Number of ST SUSYs: 0

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Mirror Model 2

QTY	<i>SO</i> (10)	<i>SO</i> (10)	<i>SO</i> (14)
40	1	1	1
12	1	1	14
14	1	10	1
1	1	10	14
16	1	16	1
14	10	1	1
1	10	1	14
16	16	1	1

Total Matter Representations: 114

Number of ST SUSYs: 0

Future Work

• Speed Optimizations

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Future Work

• Speed Optimizations

- Better algorithms
- Better knowledge of computer systems
- Parallel processing

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Future Work

Speed Optimizations

- Better algorithms
- Better knowledge of computer systems
- Parallel processing
- Additional Phenomenology

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Future Work

- Speed Optimizations
 - Better algorithms
 - Better knowledge of computer systems
 - Parallel processing
- Additional Phenomenology
- Larger Data Sets

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Future Work

- Speed Optimizations
 - Better algorithms
 - Better knowledge of computer systems
 - Parallel processing
- Additional Phenomenology
- Larger Data Sets
- Systematic NAHE and NAHE Extension Studies
Acknowledgements

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

The Baylor EUCOS group:

- Dr. Gerald Cleaver
- Jared Greenwald
- Doug Moore
- Yanbin Deng

Citations

- Keith R. Dienes and Michael Lennek. Fighting the floating correlations: Expectations and complications in extracting statistical correlations from the string theory landscape. *Phys. Rev.*, D75:026008, 2007
- H. Kawai, D. C. Lewellen, and S. H. H. Tye. Classification of Closed Fermionic String Models. *Phys. Rev.*, D34:3794, 1986
- Keith R. Dienes. Statistics on the heterotic landscape: Gauge groups and cosmological constants of four-dimensional heterotic strings. *Phys. Rev.*, D73:106010, 2006
- Jared Greenwald, Kristen Pechan, Tim Renner, Tibra Ali, and Gerald Cleaver. Note on a NAHE Variation. 2009