Modelling Protogalactic Collapse and Magnetic Field Evolution with FLASH

Introduction

The αω dynamo model explains magnetic field structure and amplification in spiral galaxies.

- Field evolution attributed to amplification of toroidal and poloidal magnetic field modes by turbulence and stretching of field lines.
- Radio observations corroborate model.

Problem: the αω dynamo only explains the mechanism for amplification. A poorly understood initial “seed” field is needed to start the dynamo engine.2

Biermann Battery

The Biermann battery is a viable candidate for this seed field.

- Shocks cause ions and electrons in a plasma to separate, generating currents, and hence magnetic fields.3
- Arises naturally from shocks in protogalactic evolution.
- Can be modeled by a pure hydro simulation when the fields are very weak.
- Magnetic field, \(\mathbf{B} \), inferred from the gas dynamics, \(\omega \times \mathbf{v} \times \mathbf{r} \)
- and \(\omega = \alpha \omega \) where \(\omega \) is the vorticity, \(\mathbf{v} \) is the velocity, \(\alpha \) is a constant, \(\omega m_{\text{ion}}(1+x) \approx 10^5 G s \) and \(x \) is the ionization fraction.4 We assume \(x \) is constant and \(\leq 1 \).

The Protogalaxy Model

- A collapsing protolobe spheroid of gas. Prolate, oblate and spheroidal shapes were simulated.
- A dark matter halo simulated by \(\sim 10^6 \) particles that only interact gravitationally.
- Set in an expanding universe with cosmological parameters, \(\{ h_0 = 1, \Omega = 0.7, \sigma = 0.5 \} \)

Chris Orban (UIUC) and Paul Ricker (UIUC)

Simulations

Tools:

- The Tungsten cluster, a 2990 processor Linux machine, at the National Center for Supercomputing Applications. Used for high resolution protogalactic collapse simulations.
- The Tsodzil cluster. A Linux machine, 8 Intel Xeon processors, 16 GB of RAM. Used for analysis.
- FLASH, an adaptive mesh refinement (AMR) code for astrophysics.5 AMR allows the resolution to be increased in more interesting regions of the simulation.

Analytic Tests:

- An analytic result for the vorticity jump across a shock was used to check accuracy.
- The vorticity jump should follow

\[
\Delta \omega = \frac{\delta^2}{1 + \delta} \frac{\partial \mathbf{v}}{\partial \mathbf{r}},
\]

where

\[
\delta = \rho_{\text{post-shock}} / \rho_{\text{pre-shock}} - 1 \quad \text{and} \quad \rho \text{ is a density. The derivative is along a tangential distance, } \mathbf{r}, \text{ ahead and behind the shock front.}
\]

- A bow shock simulation shows that the vorticity generation is accurate to about 30%

Biermann Battery

The Biermann battery is a viable candidate for this seed field.

- Shocks cause ions and electrons in a plasma to separate, generating currents, and hence magnetic fields.3
- Arises naturally from shocks in protogalactic evolution.
- Can be modeled by a pure hydro simulation when the fields are very weak.
- Magnetic field, \(\mathbf{B} \), inferred from the gas dynamics, \(\omega \times \mathbf{v} \times \mathbf{r} \)
- and \(\omega = \alpha \omega \) where \(\omega \) is the vorticity, \(\mathbf{v} \) is the velocity, \(\alpha \) is a constant, \(\omega m_{\text{ion}}(1+x) \approx 10^5 G s \) and \(x \) is the ionization fraction.4 We assume \(x \) is constant and \(\leq 1 \).

The Protogalactic Model

- A collapsing protolobe spheroid of gas. Prolate, oblate and spheroidal shapes were simulated.
- A dark matter halo simulated by \(\sim 10^6 \) particles that only interact gravitationally.
- Set in an expanding universe with cosmological parameters, \(\{ h = 1, \Omega = 0.7, \sigma = 0.5 \} \)

Future Work

- Quantitatively comparing results of the simulation to previous studies with different codes.4,6
- Analysis of prolate and oblate simulations.
- Longer term, explore later stages of protogalactic evolution with the radiative cooling and magnetohydrodynamics modules of FLASH.

References

Acknowledgments

Much thanks goes to my advisor, Paul Ricker. This work has been supported in part by the University of Illinois at Urbana-Champaign and the National Center for Supercomputing Applications. FLASH was developed at the University of Chicago ASC Flash Center, supported by the U.S. Department of Energy under contract DE-AC02-00CH10447.