
1 Light cone coordinates on the world sheet

On the world sheet we have used the coordinates τ, σ. We will see however that the physics is
simpler in light cone coordinates

ξ+ = τ + σ, ξ− = τ − σ (1)

Then we have
∂

∂τ
=

∂

∂ξ+
+

∂

∂ξ−
≡ ∂+ + ∂− (2)

∂

∂σ
=

∂

∂ξ+
− ∂

∂ξ−
≡ ∂+ − ∂− (3)

The wave equation
[∂2

τ − ∂2
σ]Xµ = 0 (4)

becomes
∂+∂−xµ = 0 (5)

The metric on the world sheet is

ds2 = g++(dξ+)2 + g−−(dξ−)2 + 2g+−(dξ+)(dξ−) (6)

If the metric has the conformal form that we have chosen, then we have

g++ = g−− = 0, g+− = −1

2
e2ρ (7)

2 The equation of motion for gab

Recall that we have taken the action

S = −T

∫

d2ξ
√−ggab∂aX

µ∂bXµ (8)

Consider the condition
δS

δgab
= 0 (9)

For the world sheet action above, this means that the stress-energy tensor of the world sheet theory
vanishes

Tab(ξ) ≡
2√−g

δS

δgab(ξ)
= 0 (10)

Working out the variation of the action we find

Tab = T [∂aX
µ∂bXµ − 1

2
gab∂cX

µ∂cXµ] = 0 (11)

Note that the trace of this stress tensor vanishes

T c
c = 0 (12)
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There were three independent components of the stress tensor since Tab = Tba, and with the
automatic vanishing of the trace we find that we are left with two vanishing conditions. Let us
examine these conditions in the coordinate frame where the metric is conformal to ηab. Then we
find

T10 = T01 = TẊ · X ′ (13)

T00 = T11 = T
1

2
[Ẋ · Ẋ + X ′ · X ′] (14)

In the coordinates ξ±, we get

T++ =
1

2
[T00 + T11 + 2T01] =

1

2
(Ẋ + X ′) · (Ẋ + X ′) = X,+ · X,+ = 0 (15)

T−− =
1

2
[T00 + T11 − 2T01] =

1

2
(Ẋ − X ′) · (Ẋ − X ′) = X,− · X,− = 0 (16)

3 Finding the momentum of the string

We will soon see that we can write simple solution to the Xµ(τ, σ). In the general solution for Xµ,
we will encounter a form

Xµ(τ, σ) = xµ + aµτ + . . . (17)

One would think intuitively that aµ would give the momentum Pµ carried by the string in spacetime.
But how do we show this, and what is the constant relating aµ to pµ?

Let us start with the case of the point particle. We had the action

S = −m

∫

dτ

√

−∂Xµ

∂τ

Xµ

∂τ
(18)

We can of course regard this action as as describing fields Xµ over the 1-dimensional base space τ .
Since the action has a translation symmetry

Xµ → Xµ + ǫµ (19)

we expect to get conserved Noether currents for these symmetries. The conserved current for
translations of Xµ is

Jτ = − m
√

−∂Xν

∂τ
∂Xν

∂τ

∂Xµ

∂τ
(20)

It is tempting to say that this should give the momentum pµ of the particle in spacetime. In fact
the answer happens to be correct, but the reasoning has a flaw. If we want the momentum of the
quantum in spacetime, then we cannot just look at the Noether current on the worldline; there is
no relation between these two notions in general. It is possible to make simple examples where the
spacetime conserved quantity and the conserved quantity obtained from the worldsheet action are
different, but for the moment let us ask why they are often the same. This happens because there
are not too many conserved quantities that one can make with the given variables, so if we have
found a conserved quantity from the worldsheet action, it might well be the conserved quantity
from the spacetime point of view.
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In any case, how do we find the actual spacetime pµ? The first principles definition of pµ is as the
spatial integral of T0µ

Pµ =

∫

dD−1XiT0µ =

∫

dD−1Xi 2√
−G

δS

δG0µ
(21)

where Gµν is the metric of spacetime. To apply this definition to our problem, we have to first
write the action for the point particle in a spacetime with general metric Gµν . We have

S = −m

∫

dτ

√

−dXµ

∂τ

dXν

∂τ
Gµν (22)

We will rewrite this in a way that makes the action S a distribution over the D-dimensional
spacetime

S = −m

∫

DDX

∫

dτ

√

−dX̄µ(τ)

dτ

dX̄ν(τ)

dτ
GµνδD(Xµ − X̄µ(τ)) (23)

Here X̄µ(τ) is the trajectory of the particle, and the delta function just says that the nonvanishing
contribution to S comes only from points on this worldline. We will make a variation with respect
to Gµν and then set Gµν = ηµν . We find

Tµν =
2√
−G

δS

δGµν
= m

∫

dτδD(Xµ − X̄µ(τ))
dXµ

dτ
dXν

dτ
√

−dX̄µ(τ)
dτ

dX̄ν(τ)
dτ

(24)

Thus

pµ =

∫

dD−1XiT0µ = m

∫

dτδ(X0 − X̄0(τ))
dX0
dτ

dXµ

dτ
√

−dX̄λ(τ)
dτ

dX̄λ(τ)
dτ

(25)

We can now use
∫

dτδ(X0 − X̄0(τ)) = [
dXo

dτ
]−1 (26)

to get

pµ = m
dX̄µ

dτ

1
√

−dX̄λ(τ)
dτ

dX̄λ(τ)
dτ

(27)

so we see that in this case we do get the result obtained from the world sheet calculation.

Let us now do the same for the string. We take the action

S = −T

∫

dτdσ
√−g

1

2

∂Xµ

∂ξc

∂Xν

∂ξd
gcdG

µν (28)

As before we write this as

S = −T

∫

dDX

∫

dτdσδD[Xµ − X̄µ(τ, σ)]
√−g

1

2

∂X̄µ

∂ξc

∂X̄ν

∂ξd
gcdG

µν (29)

Let the worldsheet be put in the conformal gauge. Then we find

pµ =

∫

dD−1X−T0µ = T [
∂X̄0

∂τ

∂X̄ν

∂τ
− ∂X̄0

∂σ

∂X̄ν

∂σ
]δ(X0 − X̄0(τ, σ))dτdσ (30)
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In the first piece we can solve the delta function as before, getting

pµ = T

∫

dσ
∂X̄ν

∂τ
(31)

The other piece vanishes because the σ integral is periodic. Thus we have an expression for pµ that
is similar to the one in the point particle case, and it is again one that could have been guessed
(though not rigorously derived) from the worldsheet action and its Noether currents.

4 The mode expansion: zero modes

Let us write the harmonic functions Xµ as

Xµ(τ, σ) = xµ + aµτ + bµσ + . . . (32)

where the terms that are not written involve the sinusoidal oscillations of the string. We will focus
on aµ, bµ in this section.

Note that xµ gives the center of mass position of the string. We can guess that aµ will be related
to the center of mass momentum carried by the string. Let us find the precise connection between
aµ and pµ.

We consider the closed string. Let us take the range of σ to be

0 ≤ σ < 2π (33)

From

pµ = T

∫

dσ
∂Xν

∂τ
(34)

we conclude that
pµ = 2πTaµ (35)

so that

aµ =
1

2πT
pµ (36)

We will write

T =
1

2πα′
(37)

so that α′ will have units of L2. Then we get

aµ = α′pµ (38)

and our string mode expansion looks like

Xµ(τ, σ) = xµ + α′pµτ + bµσ + . . . (39)

Now let us consider bµ. The string is a closed loop, so we might expect that Xµ(τ, σ) = Xµ(τ, σ +
2π). This would imply that bµ = 0. But recall that some of the directions of spacetime can be
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closed circles, and the string can wrap around these closed circles. Let the compact directions form
a torus, which is specified by giving a lattice of identifications on Rn, where n is the number of
compact directions. Let the vectors defining the sides of the torus be given by

Lµ
(α), α = 1, . . . n (40)

Then we must have
Xµ(τ, σ + 2π) = Xµ(τ, σ) +

∑

(α)

n(α)L
µ
(α) (41)

From the mode expansion we thus see that

2πbµ =
∑

(α)

n(α)L
µ
(α) (42)

or

bµ =
1

2π

∑

(α)

n(α)L
µ
(α) (43)

Let us now return to the mode expansion. We have noted that the most general solution to the
wave equation can be written as a function of ξ+ = τ + σ plus a function of ξ− = τ − σ. Thus let
us write our mode expansion in this form

Xµ(τ, σ) = [
1

2
xµ +

1

2
(aµ + bµ)(τ + σ) + . . .]

+[
1

2
xµ +

1

2
(aµ − bµ)(τ − σ) + . . .]

≡ [
1

2
xµ + α′pµ

L(τ + σ) + . . .]

+[
1

2
xµ + α′pµ

R(τ − σ) + . . .]

(44)

Thus we get

pµ
L =

1

2
[pµ +

1

2πα′
n(α)L

µ
(α)] =

1

2
[pµ + Tn(α)L

µ
(α)] (45)

pµ
R =

1

2
[pµ − 1

2πα′
n(α)L

µ
(α)] =

1

2
[pµ − Tn(α)L

µ
(α)] (46)

So far we have been looking at the classical theory, but if we quantize the string then the momentum
in the compact directions will be quantized. From single-valuedness of the wavefunction we will
need to have

eipµXµ

= e
ipµ

“

Xµ+
P

(α) n(α)L
µ

(α)

”

(47)

which implies that
pµLµ

(α) = 2πm(α) (48)

for integral m(α).

From the above we note the following fact

p2
L − p2

R =
1

2πα′

∑

(α)

n(α)pµLµ
(α) =

1

α′

∑

(α)

n(α)m(α) (49)

Thus α′(p2
L − p2

R) is an integer. This fact will be of importance when we study black holes.
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5 The full mode expansion

Now let us write the full expansion of Xµ

Xµ(τ, σ) = [
1

2
xµ + α′pµ

L(τ + σ) + i

√

α′

2

∑

n 6=0

αµ
n

n
e−in(τ+σ)]

+[
1

2
xµ + α′pµ

R(τ − σ) + i

√

α′

2

∑

n 6=0

α̃µ
n

n
e−in(τ−σ)] (50)

We have just written added all the nonzero harmonics for the left and right movers. At the present
classical level, observe that reality of the Xµ implies

αµ
n =

(

αµ
−n

)∗
(51)

At the quantum level we will have

α̂µ
n =

(

α̂µ
−n

)†
(52)

The reason for writing the coefficients in the above form will be clear when we compute the com-
mutators of the αµ

n, since they will look simple

[α̂µ
m, α̂ν

n] = mηµνδm+n,0 (53)

Let us verify this commutation relation. The action is

S = −T

∫

d2ξ
1

2
∂cX

µ∂cXµ (54)

The basic variables are Xµ, and the canonically conjugate momenta in this 2-dimensional action
are

Pµ =
∂L

∂τXµ
= T∂τXµ (55)

With the above mode expansion we get

Pµ = T

[

α′pµ +

√

α′

2
αµne−in(τ−σ) +

√

α′

2
α̃µne−in(τ+σ)

]

(56)

In the commutator [Xµ, Pν ] let us first look at the contribution of the left oscillators. We set the
times equal τ = τ ′ = 0 and get

[Xµ(σ), Pν(σ′)] → δµ
ν T

α′

2
i[

αm

m
,αn]eimσeinσ′

(57)

Using the above commutation relation between oscillators, this gives

[Xµ(σ), Pν(σ′)] → δµ
ν

1

4π
i
∑

m6=0

eim(σ−σ′) (58)

The zero modes contribute

[xµ, Tα′pν ] = iδµ
ν

1

2π
(59)
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Putting half of this contribution towards the left movers and half towards the right movers, we find
that the left movers give

[Xµ(σ), Pν(σ′)] → δµ
ν

1

4π
i
∑

n

ein(σ−σ′) = iδµ
ν

1

2
δ(σ − σ′) (60)

Adding in the contribution of the right movers, we get

[Xµ(σ), Pν(σ′)] = δµ
ν iδ(σ − σ′) (61)

as desired.

6 The constraints

Now recall the constraints
∂Xµ

∂ξ+

∂Xµ

∂ξ+
= 0,

∂Xµ

∂ξ−
∂Xµ

∂ξ−
= 0 (62)

We have
∂Xµ

∂ξ+
= α′pµ

L +

√

α′

2

∑

n 6=0

αµ
ne−inξ+

(63)

We write

α′pµ
L =

√

α′

2
αµ

0 , ⇒ αµ
0 =

√
2α′pµ

L (64)

Then
∂Xµ

∂ξ+
=

√

α′

2

∑

n

αµ
ne−inξ+

(65)

where now the term n = 0 is included in the sum. Then

∂Xµ

∂ξ+

∂Xµ

∂ξ+
=

α′

2

(

∑

m

αµ
me−imξ+

)(

∑

n

αµ
ne−inξ+

)

(66)

This function should vanish for all τ, σ. Thus the coefficient of all fourier modes should be zero.
We get

ηµναµ
mαν

p−m = 0, for all p (67)

where from now on we will assume the summation convention on indices like m which are repeated.

Consider the above constraint for p = 0. We get

2α′p2
L + ηµναµ

mαν
−m = 0 (68)

We have let n of the directions be compact. Let pµ
nc be the momentum of the string in the

noncompact directions. The mass of the state as seen from the viewpoint of these noncompact
directions is

m2 = −pµ
ncpncµ (69)
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Thus we should separate the compact and noncompact contributions to p2
L. We will assume that

the compact directions are all completely orthogonal to the noncompact ones. Let pµ
c,L be the part

of pµ
L in the compact directions. Then we have

m2 = 4pµ
c,Lpc,Lµ +

2

α′
αµ

mαν
−m (70)

Repeating the same computations with the left movers we can get a similar relation

m2 = 4pµ
c,Rpc,Rµ +

2

α′
α̃µ

mα̃ν
−m (71)

Subtracting these two expressions for m2 we find

pµ
c,Lpc,Lµ − pµ

c,Rpc,Rµ = − 1

2α′
[αµ

mαν
−m − α̃µ

mα̃ν
−m] (72)

But for the noncompact directions pµ
L = pµ

R = 1
2pµ. Thus we have

pµ
c,Lpc,Lµ − pµ

c,Rpc,Rµ = p2
L − p2

R (73)

and we find

p2
L − p2

R = − 1

2α′
[αµ

mαν
−m − α̃µ

mα̃ν
−m] (74)

Recalling (49) we see that
αµ

mαν
−m − α̃µ

mα̃ν
−m = 2N (75)

where N is an integer. This expression will be important in the computation of black hole entropy.

7 The Casimir effect

The zero point energies for a field mode give a contribution

1

L

1

2
[1 + 2 + . . .] (76)

Thus let us compute the sum
S = 1 + 2 + . . . (77)

Formally, this sum looks infinite. But physically, what we want is the energy for these discrete
modes, minus the energy from the same region of space if the modes were continuous. To compute
the difference of these two infinite quantities, we must first regularize each of them. To do this,
choose any function f(x) which is unity for small x, but at very large x (say x ≫ Q) goes down
smoothly to zero. Then we compute

∞
∑

0

nf(n)−
∫ ∞

0
xf(x)dx

At the end we take Q → ∞, and this should give us the required difference in energies.

8



To see this computation pictorially, let us plot the function xf(x). Note that the integral under
this curve gives the contribution of continuous vacuum modes, while if we just sum this function
over the integer values x = n then we get the discrete sum. We can draw a ‘bar graph’ where we
draw a rectangle with height n over the interval from n < x < n + 1. Then the discrete sum is the
area under this bar graph. The difference in areas under the bar graph and under the curve will
be the difference that we are seeking. Remarkably, this will be a finite number, and in the limit of
large Q, will be independent of the choice of function f .

We will call the discrete sum S, and the continuous integral I.

Look at the block from n̄ to n̄ + 1. We get

Sum = S = nf(n)

I =

∫ n+1

n

xf(x)dx =

∫ 1

0
dy[nf(n)] + [nf ′(n) + f(n)]y + [2f ′(n) + nf ′′(n)]

y2

2
]

= [nf(n)] + [nf ′(n) + f(n)]
1

2
+ [2f ′(n) + nf ′′(n)]

1

6
]

So we have

S − I = −
∑ 1

2
[nf ′(n) + f(n)] − 1

6
[2f ′(n) + nf ′′(n)]

Note that we have large envelope for f , and we can take each of its derivatives to be O(1/Q), where
Q is the size of this envelope. Thus we see that the first set of terms is larger than the second.

Let us write
S̃ =

∑

[nf ′(n) + f(n)]

Then we can define

Ĩ =

∫

dx
(

xf ′(x) + f(x)
)

Let us compute this in the sam way as above, approximating it by an integral. We have

Ĩ =
∑

[nf ′(n) + f(n)]y + [2f ′(n) + nf ′′(n)]
y2

2

=
∑

[nf ′(n) + f(n)] + [2f ′(n) + nf ′′(n)]
1

2

S̃ − Ĩ = −
∑

[2f ′(n) + nf ′′(n)]
1

2

Note that

Ĩ = xf(x)|∞0 −
∫

f(x) +

∫

f(x) = 0

We thus have

S − I =
∑

[f ′(n)
1

2
+ nf ′′(n)

1

4
− f ′(n)

1

3
− nf ′′(n)

1

6
=
∑ 1

6
f ′(n) +

1

12
nf ′′(n)

Let us now again approximate this by an integral; this time we will find that the difference between
the sum and the integral is ignorable at large Q. Then we get

S − I =

∫

dx[
1

6
f ′(x) +

1

12
xf ′′(x)]
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=
1

6
(−1) +

1

12
[f ′(x)x| −

∫

f ′(x)]

= −1

6
+

1

12

= − 1

12

where we have used that f(0) = 1, f ′(0) = 0.
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