
1 The action for particles in special relativity

In Newtonian mechanics we have seen that the Lagrangian is a function of of the generalized
coordinates qk, their time derivatives q̇k and possibly the time t as well. Thus we write
L[qk, q̇k, t], where q̇k ≡ dqk

dt . For the simple example of a particle moving in a potential well,
the Lagrangian is just

L = T − V =
1

2
mẋ2 − V (x) (1)

Now consider a particle of mass m, with no potential, but now including the effects of
special relativity. The distance in usual space is defined by

ds2 = dx2 + dy2 + dz2 (2)

but when we include time as another coordinate, we define distance as

ds2 = dt2 − dx2 − dy2 − dz2 (3)

Here and in all that follows we will choose units so that c = 1. The variational principle
for a free particle in special relativity is very simple: we just extremize the path length
given by the definition of distance (3). Thus

S = −m
∫ f

i
ds = −m

∫ f

i

√
dt2 − dx2 − dy2 − dz2 (4)

Here the constant −m will make no difference to the extremization problem, but it makes
the low velocity limit of (5) agree with the Newtonian Lagrangian

S = −m
∫ f

i
ds = −m

∫ f

i

√
dt2 − dx2 − dy2 − dz2 = −m

∫ f

i

√
1− (

dx

dt
)2 − (

dy

dt
)2 − (

dz

dt
)2 dt

≈ −m
∫ f

i
[1− 1

2
|~v|2]dt = −m(tf − ti) +

∫ f

i

1

2
m|~v|2dt (5)

where in the second line we have used the binomial expansion for low velocities (i.e. veloc-
ities much smaller than 1, which in our units is the speed of light). Now note that the part
−m(tf − ti) is the same for all paths in the variational principle when the initial and final
endpoints are held fixed. So we may drop this term from the variational principle, and we
just get the kinetic energy T , as expected for the Newtonian limit for a free particle.

In the first line of (5) we extracted dt from under the square root, and wrote our
coordinates as x(t), y(t), z(t). While this is a correct procedure, one may wish to keep
complete symmetry between all four coordinates x, y, z, t, since this would be more in
keeping with the spirit of relativity. What will then be the variable of integration in the
action in place of t? We choose an arbitrary parameter τ to label the points on the worldline
of the particle. Then the worldline is described by the variables

t(τ), x(τ), y(τ), z(τ) (6)
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The action can then be written as

S = −m
∫ f

i

√
(
dt(τ)

dτ
)2 − (

dx(τ)

dτ
)2 − (

dy(τ)

dτ
)2 − (

dz(τ)

dτ
)2 dτ (7)

This is just like a usual Lagrangian problem, except that now τ acts like our ‘time’, and
there are four coordinates instead of three.

2 General coordinates

Suppose we use polar coordinates instead of Cartesian. Then the distance between two
infinitesimally separated points is given by

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (8)

instead of (2). If we include time, then we would get

ds2 = dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2 (9)

instead of (3).
Now suppose we have a gravitational field, created by some heavy mass like the sun.

By Einstein’s theory of general relativity, we can absorb the entire effect of gravity by
just replacing ‘flat spacetime’ by ‘curved spacetime’. For a spherical source like the sun,
the spacetime outside the source is given by the following distance measure (called the
Schwarzschild metric)

ds2 = (1− 2GM

r
)dt2 − 1

1−2GM
r

dr2 + r2dθ2 + r2 sin2 θdφ2 (10)

There is a convenient shorthand for writing such distance relations. We write

ds2 =

d∑
a=1

d∑
b=1

gab(ξ
1, . . . ξd)dξadξb (11)

where ξa, a = 1, 2, . . . d are the coordinates and gab(ξ
1, . . . ξd) are some functions of the

coordinates. Note that we can take gab(ξ
1, . . . ξd) = gba(ξ

1, . . . ξd), because the two indices
appear symmetrically in the overall sum. This distance measure (11) is called the metric.
Thus for the Schwarzschild metric the metric coefficients are

g11 ≡ gtt = 1− 2GM

r
, g22 ≡ grr = − 1

1−2GM
r

, g33 ≡ gθθ = −r2, g44 ≡ gφφ = −r2 sin2 θ

(12)
with all other coefficients zero.
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3 Geodesic motion in the Schwarzschild metric

The motion of particles in general relativity is given by a principle as simple as the one in
special relativity: we just extremize the path length from the initial position to the final
position. Let us again parametrize the path by a variable τ , so that the functions to be
determined are ξa(τ), a = 1, . . . d. Thus the action is

S = −m
∫ f

i
ds = −m

∫ f

i

√√√√ d∑
a=1

d∑
b=1

gab(ξ1 . . . ξd)
dξa(τ)

dτ

dξb(τ)

dτ
dτ (13)

This is now just a general variational problem, with one difference. The parameter τ was
arbitrary, and after we have found the equations of motion from the variational principle,
we will still have the right to choose it is some particular way if that should prove more
convenient.

Let us now specialize to geodesic motion in the Schwarzschild metric. Just as in the
Newtonian problem, we can restrict motion to the equatorial plane θ = π

2 , since reflection
symmetry across this plane will not allow the particle to move either above or below this
plane if it starts out with positions and velocities in this plane. Thus we will only have the
variables t(τ), r(τ), φ(τ), and the metric coefficients will be taken from (12).

We see that the metric coefficients depend on r, but not on t, θ. Thus t, θ are cyclic
coordinates, and there are two conserved quantities

pt =
∂L

∂( dtdτ )
=

m
∑

c gtc
dξc

dτ√∑
a,b gab

dξa

dτ
dξb

dτ

(14)

pθ =
∂L

∂( dθdτ )
=

m
∑

c gθc
dξc

dτ√∑
a,b gab

dξa

dτ
dξb

dτ

(15)

At this point we see that there is a good way to choose the arbitrary parameter τ . We can
choose it to measure distance ds along the worldline. Thus we will have

dτ2 = ds2 =
∑
ab

gabdξ
adξb (16)

This implies that ∑
a,b

gab
dξa

dτ

dξb

dτ
= 1 (17)

which simplifies the expressions for the conserved quantities. For the Schwarzschild metric
the above condition becomes

(1− 2GM

r
)(
dt

dτ
)2 − 1

(1− 2GM
r )

(
dr

dτ
)2 − r2(dθ

dτ
)2 = 1 (18)
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and the conserved quantities are

pt = m(1− 2GM

r
)
dt

dτ
(19)

pθ = −mr2 dθ
dτ

(20)

We thus have
dt

dτ
=

pt

m(1− 2GM
r )

,
dθ

dτ
= − pθ

mr2
(21)

and the condition (18) becomes

p2t
m2(1− 2GM

r )
− 1

(1− 2GM
r )

(
dr

dτ
)2 −

p2θ
m2r2

= 1 (22)

which we rewrite as

1

2
(
dr

dτ
)2 +

[p2θ(1− 2GM
r )

2m2r2
− GM

r

]
=

1

2
(
p2t
m2
− 1) (23)

We can think of this as the energy balance equation for a particle of unit mass moving in
the 1-dimensional effective potential

Veff =
p2θ(1−

2GM
r )

2m2r2
− GM

r
(24)

with effective total energy

Eeff =
1

2
(
p2t
m2
− 1) (25)
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