Summary Lecture 3

Uniformly Accelerated Motion

- \(a = \text{constant} \)
- **Conventions**
 - \(v_o = \text{velocity at } t = 0 \)
 - \(x_o = \text{position at } t = 0 \)
- **Equations**
 - \(x = x_o + v_o t + a/2 \ t^2 \)
 - \(v = v_o + a t \)
 - \(v^2 = v_o^2 + 2a (x - x_o) \)

Falling Bodies

- In the absence of air resistance all bodies fall with the same uniform acceleration
- \(g = 9.80 \text{ m/s}^2, \text{ downward} \)
 - (\(g \) is not constant, e.g. \(g_{\text{Moon}} \sim 1/6 \ g_{\text{Earth}} \))

Problem Solving

- Make a sketch
- Define your coordinate system
 - **Origin**
 - **(+) Direction**
- Write done the information given
<table>
<thead>
<tr>
<th>Scalars</th>
<th>Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>Displacement</td>
</tr>
<tr>
<td>Speed</td>
<td>Velocity</td>
</tr>
<tr>
<td>Mass</td>
<td>Acceleration</td>
</tr>
<tr>
<td>Time</td>
<td>Force</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Vectors have magnitude and direction**
- **Tip-to-Tail Rule**

\[\vec{A} + \vec{-A} = \vec{0} \]
Vectors, Components and Coordinate Systems

\[D^2 = D_x^2 + D_y^2 \]
\[\tan \alpha = \frac{D_y}{D_x} \]

\[D_x = D \cos \alpha \]
\[D_y = D \sin \alpha \]

Vector Addition

\[\vec{C} = \vec{A} + \vec{B} \]
\[\Rightarrow C_x = A_x + B_x \quad , \quad C_y = A_y + B_y \]