Summary Lecture 13

Energy <=> Work

\[PE = mgh \]
\[KE = \frac{m}{2} v^2 \]
\[PE_E = \frac{k}{2} x^2 \]

Total work on an object

\[W_{(total)} = F_{net} s \cos \theta \]

Work Energy Theorem

\[W_{(total)} = \Delta KE \]
\[W_{NC} + W_C = \Delta KE \]
\[W_{NC} = \Delta KE + \Delta PE = E_f - E_i \]

If \(W_{NC} = 0 \)

\[E_f = E_i \]

Energy Conservation
Power

Power is the rate at which work is done or energy is transformed

\[P = \frac{W}{t} \quad \text{or} \quad \frac{\Delta E}{t} \]

Units: 1 J/s = 1 W [Watt]
Definition of Impulse

\[\vec{J} = \vec{F} \Delta t \]

Useful in collisions with a time-varying force. \(\vec{F} \) is the average force during the collision, \(\Delta t \) is the duration of the collision. Vector

Definition of Linear Momentum

\[\vec{p} = m \vec{v} \]

The momentum \(\vec{p} \) is a vector in the direction of the velocity. Vector

Impulse-Momentum Theorem

Impulse = Total momentum change

\[\vec{J} = \vec{F} \Delta t = \Delta \vec{p} \ (= m \vec{v}_{\text{Final}} - m \vec{v}_{\text{Initial}}) \]