Consider the coupled ordinary differential equations

\begin{align*}
\dot{x}_1 &= -2x_1(t) + x_2(t) \quad (1) \\
\dot{x}_2 &= x_1(t) - 2x_2(t) \quad (2)
\end{align*}

where the dot denotes differentiation with respect to time \(t \). We wish to solve these equations given initial conditions \(x_1(0) \) and \(x_2(0) \) at \(t = 0 \). We will solve this by a simple trick: adding and subtracting the two equations yields

\begin{align*}
\frac{d(x_1 + x_2)}{dt} &= -(x_1 + x_2) \quad (3) \\
\frac{d(x_1 - x_2)}{dt} &= -3(x_1 - x_2) \quad (4)
\end{align*}

We define the variables

\begin{align*}
y_+(t) &\equiv x_1(t) + x_2(t) \quad (5) \\
y_-(t) &\equiv x_1(t) - x_2(t). \quad (6)
\end{align*}

Substituting, we obtain

\begin{align*}
\dot{y}_+ &= -y_+ \quad (7) \\
\dot{y}_- &= -3y_- \quad (8)
\end{align*}

The linear combinations decouple the variables rendering them easy to solve. We obtain

\begin{align*}
y_+(t) &= y_+(0) e^{-t} \quad (9) \\
y_-(t) &= y_-(0) e^{-3t}. \quad (10)
\end{align*}

You should be crystal clear\(^1\) about solving the ode \(\dot{x} = -ax \) and how the initial condition enters the solution.

Let us write down the solution in terms of the original variables for completeness. Given \(y_+ \) and \(y_- \) (Equations (5) and (6)) you can check that

\begin{align*}
x_1(t) &= \frac{1}{2} (y_+(t) + y_-(t)) \quad (11) \\
x_2(t) &= \frac{1}{2} (y_+(t) - y_-(t)). \quad (12)
\end{align*}

\(^{1}\)“crystal clear” is a synonym for “you should be able to do it on an exam”
Note that these two equations are true at all times including the initial time $t = 0$. Thus we have

$$x_1(t) = \frac{1}{2} \left[(x_1(0) + x_2(0)) e^{-t} + (x_1(0) - x_2(0)) e^{-3t} \right]. \quad (13)$$

Please write down an analogous expression for $x_2(t)$. This yields the time dependence of the two variables for the given initial conditions.

Let us write the given equations in matrix form:

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}. \quad (14)$$

We define

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix}.$$

We can define the two ODEs compactly as

$$\frac{d}{dt} \vec{x} = M \vec{x}$$

where M is the 2×2 matrix in Equation (14).

Find the eigenvalues of M. You should know how to find eigenvalues of 2×2 matrices quickly and correctly. They are -1 and -3. Note that the exponential time dependencies in y_+ and y_- contain exactly these eigenvalues -1 and -3. This is, of course, not a coincidence. Furthermore let us find the corresponding eigenvectors. You should be able to do this. The normalized eigenvectors are

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ and } \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Note that the elements correspond exactly to the linear combinations that occur in y_+ and $y_-.$

Note that M is a symmetric matrix. Write down three important properties of symmetric matrices and commit them to memory.

\[\text{this is another synonym for}\]
The formal way to proceed that you should be familiar with is to make a guess (\textit{ansatz}) for the \textbf{normal modes} in which all the dynamical degrees of freedom have the same time dependence. We assume

\begin{align*}
x_1(t) &= A_1 e^{\lambda t} \\
x_2(t) &= A_2 e^{\lambda t}.
\end{align*}

Both x_1 and x_2 are assumed to have the same exponential time dependence (since the equation is real and linear this is obvious from the one-variable case) but different amplitudes. Substituting into Equations 1 and 2 and canceling the exponential time dependence yields

$$\lambda \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = M \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}.$$

Thus the time dependence is determined by the eigenvalues of M. The amplitudes are determined by the corresponding eigenvectors up to an overall constant.

If we denote the two eigenvalues of M by λ_1 and λ_2 and the corresponding normalized eigenvectors by $\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ and $\begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$ we can write the solution as a linear combination of the two solutions with coefficients:

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} e^{\lambda_1 t} + c_2 \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} e^{\lambda_2 t}.$$

\textit{Just to be sure substitute the above expression into the ODEs and check that they are satisfied.} Once more with emphasis the coefficients are determined by the initial conditions. Setting $t = 0$ in the above equation we obtain coupled algebraic equations that can be solved. An easier way to do this is to remember the properties of symmetric matrices: \textbf{The eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are orthogonal.} We will study this again later.