Physics 133, Quiz 3, Spring 2006; 3:30

$$\lambda = h/p$$
 $E = hf = hc/\lambda$ $Flux = I/E_{ph}$ Intensity $I = P_{source}/A$ Single slit width $w=2\lambda L/a$

Multiple choice: choose the best answer for each question.

1) A proton, an electron and an oxygen atom each pass at the same speed the	hrough a 1-μm-wide
slit. Which will produce a wider diffraction pattern on a detector	behind the slit?

	D1100 //
A.	The proton
	The electro

The oxygen atom.

All three will be the same.

None of them will produce a diffraction pattern.

2) Light beams A and B have the same intensity but λ_A is longer than λ_B . The photon flux

(number crossing a unit area per unit time) is:

Greater for A than for B

$$E_A = hc/\lambda_A$$

Greater than B than for A

 $E_B = hc/\lambda_B$

C. The same for A and B

FLUX = I .: FLUX A > FLUX B Not enough info to decide D.

3) Monoenergetic electrons are incident on a single slit barrier. If the energy of each incident electron is increased the central maximum of the diffraction pattern:

Α. widens narrows

Stays the same

Depends on the speed of the electrons D.

in of the diffraction pattern.

if E increases, p increases,
$$\lambda$$
 decreases

 $W = \frac{2\lambda L}{a}$ decreases

4) A photon in light beam A has twice the energy of one in light beam B. The ratio of λ_A / λ_B of

the wavelengths is:

$$1/2$$
 $\lambda_A = \frac{hc}{E_A}$ $\lambda_B = \frac{hc}{E_B}$
C. 1

 $\frac{\Lambda_A}{\lambda_B} = \left(\frac{hc}{E_A}\right)\left(\frac{E_B}{hc}\right) = \frac{E_B}{F_a} = \frac{E_B}{7F_a} = \frac{1}{7}$ D. 2 E. 4

5) J. J. Thomson's conclusion that cathode ray particles are fundamental constituents of atoms was based primarily on which observation?

They have a negative charge.

They are the same from all cathode materials.

Their mass is much less than hydrogen.

They penetrate very thin metal foils.