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We discuss the fourfold anisotropy of the in-plane ferromagnetic resonance field Hr, found in a square lattice
of circular Permalloy dots when the interdot distance a becomes comparable to the dot diameter d. The
minimum Hr along the lattice �11� axes and the maximum along the �10� axes differ by �50 Oe at a /d=1.1.
This anisotropy, not expected in uniformly magnetized dots, is explained by a mechanism of nonuniform
magnetization m�r� in a dot in response to dipolar forces in the patterned magnetic structure under strong
enough applied field. It is well described by an iterative solution of a continuous variational procedure.
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Magnetic nanostructures are of increasing interest for
technological applications, such as patterned recording
media1 or magnetic random access memories.2 One of the
most important issues for understanding their collective be-
havior is the effect of long-range dipolar interactions be-
tween the dots.3 For the single-domain magnetic state of a
dot, the simplest approximation is that dots are uniformly
magnetized and interactions only define the relative orienta-
tion of their magnetic moments.4 If so, the system of dipolar
coupled dots in a square lattice should be magnetically iso-
tropic.

However, in all known experimental studies of closely
packed arrays of circular dots, a fourfold anisotropy �FFA�
was found, by either Brillouin light scattering,5 ferromag-
netic resonance6 �FMR�, or magnetization measurements
�from hysteresis loops�.7,8 To explain this effect under weak
enough applied field, a mechanism of vortex displacements
was suggested7 and described in a model of two competing
domains.9 But it is important to note that the FFA exists also
in almost saturated samples �i.e., above the vortex annihila-
tion point on the hysteresis loop�, in the opposite limit of
strong enough applied field. In this situation, the FFA was
qualitatively related to the stray fields from unsaturated parts
of the magnetization inside the dots.5 However no quantita-
tive description of this sort of FFA was given up to now. So
the present study is aimed at confirming this conjecture and
explaining quantitatively this new kind of anisotropy in
terms of a modified demagnetizing effect in a patterned pla-
nar system at decreasing interdot distance, from the limit of
the isolated dot to that of the continuous film. The chosen
array geometry permits us to study this effect in the purest
form, eliminating other known mechanisms of configura-
tional anisotropy, such as those due to the square form of a
dot10 or the finite size of a square array.11 The choice of
experimental �X-band� FMR techniques has an advantage in
eliminating possible interference from domain �vortex�
structures.12 The variational theoretical analysis is followed
by micromagnetic simulations.

Permalloy �Py� dots were fabricated with electron beam
lithography and lift-off techniques, as explained elsewhere.13

The dots of thickness t=50 nm and diameter d=1 �m were
arranged into square arrays with the lattice parameter a
�center-to-center distance� varying from 1.1 to 2.5 �m. The
dimensions were confirmed by atomic force microscopy and
scanning electron microscopy. Room-temperature FMR stud-
ies were performed at 9.8 GHz using a standard X-band
spectrometer. The dependence of the FMR field Hr on the
azimuthal angle �H of applied field H with respect to the
lattice10 axis for almost uncoupled dots �a=2.5 �m� is
shown in Fig. 1�a�. Only a weak uniaxial anisotropy of
Hr��H� is present here, which can be fitted by the simple
formula Hr��H�=Hr,av+H2 cos 2�H. For the a=2.5 �m
sample, we found the average peak position Hr,av
�1.13 kOe and the uniaxial anisotropy field H2�5 Oe. The
latter value remains the same for the rest of our samples, and

FIG. 1. In-plane FMR field in square lattices of 1 �m circular
Py dots as a function of field angle �H. �a� The data for lattice
parameter a=2.5 �m are well fitted by uniaxial anisotropy �solid
line�. �b� At a=1.1 �m, the best fit �solid line� is a superposition of
FFA and uniaxial anisotropy �separately shown by dashed line�.
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the alignment of this uniaxial anisotropy along one of the
lattice axes suggests that it is most probably caused by a
slight deviation ��a /a�0.01� from a square unit cell, by
some technological factors.

With decreasing distance a between dots, two changes are
observed in the Hr��H� dependence. First, Hr,av decreases to
�1.09 kOe at a=1.1 �m �Fig. 1�b��. Second, a fourfold an-
isotropy is detected in the samples with a�1.5 �m by pro-
nounced minima of Hr��H� at �H close to the lattice �11�
axes. This behavior is fitted by Hr�a ,�H�=Hr,av�a�
+H4�a�cos 4�H+H2 cos 2�H, as shown in Fig. 1�b�. The in-
terdot distance dependence of Hr,av and the FFA field H4 is
shown in Fig. 2. Also such anisotropy is detected in the FMR
linewidth, smaller for �11� than for �10� case �reaching
�30% at a /d=1.1�.

The FFA effect, which could not arise in uniformly in-
plane magnetized cylindrical dots, is evidently related to a
nonuniform distribution of the magnetization m�r ,� ,z� �in
cylindrical coordinates 0�r�R=d /2 ,0���2� ,0�z� t�.
In the presence of external fields strong enough to observe
FMR, one has to assume a continuous �and mostly slight�
deformation of m�r ,��. The simplest model for such defor-
mation used a variational procedure with respect to a single
parameter.14 However, as will be shown below, the nonuni-
form magnetic ground state of this coupled periodic system
results from a rather complicated interplay between intradot
and interdot dipolar forces, which requires a more general
variational procedure.

Assuming fully planar and z-independent dot magnetiza-
tion with the two-dimensional �2D� Fourier amplitudes mg
=	eig·rm�r�dr, the total �Zeeman plus dipolar� magnetic en-
ergy �per unit thickness of a dot� can be written as �see the
Appendix�

E = − H · m0 +
2�

a2 

g�0

f�gt�
g2 �mg · g�2. �1�

Here f�u�=1− �1−e−u� /u �Ref. 4� and the vectors of the 2D
reciprocal lattice are �H dependent: g= �2� /a��n1 cos �H

−n2 sin �H ,n1 sin �H+n2 cos �H� �for H �x and integer n1,2�.
The variation of exchange energy at deformations on the
scale of the whole sample is of the order of the stiffness
constant ��10−6 erg/cm for Py� and it can be neglected
compared with the variation �HMsd

2�10−2 erg/cm of
terms included in Eq. �1�. If the dot magnetization has con-
stant absolute value m�r�=Ms(cos ��r� , sin ��r�), its varia-
tion �m�r�= ẑ�m�r����r� �where ẑ is the unit vector nor-
mal to the plane� is due only to the angle variation ���r�.
Using the Fourier transform �mg= ẑ�
g�mg−g���g� in the
condition �E=0 leads to the equilibrium equation for the
Fourier amplitudes:

mg,y =
4�

Ha2 

g��0

f�g�t�
g�2 �mg� · g���mg−g� � g�� · ẑ . �2�

It can be suitably solved by iterations:

mg,y
�n� =

4�

Ha2 

g��0

f�g�t�
g�2 �mg�

�n−1� · g���mg−g�
�n−1�

� g�� · ẑ , �3�

starting from uniformly magnetized dots as the zeroth itera-
tion: mg,y

�0� =0, mg,x
�0� =2�RMsJ1�gR� /g �with the Bessel func-

tion J1�. Already the first iteration �including the inverse Fou-
rier transform�

my
�1��r� = − 	�d − 2r�

8�2R2Ms
2

Ha2 

g�0

f�gt�gxgy

g3

� J1�gR�cos�g · r� �4�

�with the Heaviside 	 function� reveals the FFA behavior,
due to the rotationally noninvariant product gxgy. The calcu-
lated maximum variation of ��r�=arcsin�my�r� /Ms� in the
�10� field geometry is �60% bigger than in the �11� geom-
etry �Fig. 3, top row�. Moreover, the two pictures are quali-
tatively different: the fully “convex” deformation in the �10�
case and the change from central “concave” to peripheral
“convex” deformations in the �11� case reflect the interplay
of inter- and intradot dipolar forces. This behavior cannot be
obtained with any single variational parameter, and it persists
upon further iterations.

Our analytic approach was checked, using the micromag-
netic OOMMF code15 on a 9�9 array of the considered disks
�Fig. 3, bottom row� at standard values of Ms=0.83 kOe and
exchange stiffness A=1.3�10−6 erg/cm16 for Py �neglecting
its crystalline anisotropy�. Each dot was projected onto a
1 �m side square grid of 100�100 elements of 50 nm
height. The distributions obtained in this way for the central
disk in the array are within �10% of the analytic results of
the first iteration. Practically the same results were obtained
setting A=0 which confirms the former conclusion on the
irrelevant variation of exchange energy in the given system.

The FMR precession of m�r� is defined by the internal
field Hi�r�=H+h�r� through the local dipolar field

hz�r� = −
4�

a2 

g

�1 − f�gt��mg,z cos�g · r� ,

FIG. 2. �a� Average FMR field Hr,av and FFA field H4 as func-
tions of interdot spacing a. The points are the experimental data and
the solid lines present the first-iteration theory �the limits mark Hr

of an isolated dot and a continuous film�. �b� The same data plotted
against �d /a�2 for Hr,av and �d /a�4 for H4 give excellent linear fits
�dashed lines�.
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h
�r� = −
4�

a2 

�,g�0

f�gt�g
g�

g2 m̃g,� cos�g · r� �5�

�
 ,�=x ,y�. The first iteration for h�r� corresponds to the
zeroth iteration for m�r�= �Ms ,�y ,�z�, which now includes
the uniform FMR amplitudes �y ,�z. Then the local demag-
netizing factors Nx�r�=−hx�r� /Ms, Ny,z�r�=−hy,z�r� /�y,z de-
fine the local FMR field Hr�r�:

Hr�r� = H0
2 + Ms

2�Nz�r� − Ny�r��2/4

− Ms�Nz�r� + Ny�r� − 2Nx�r��/2 �6�

�here H0�3.3 kOe�. The average FMR field is defined by
the isotropic averaged demagnetizing factors

N̄x,y = ��R2�−1�
r�R

Nx,y�r�dr = �8�2/a2�

g�0

f�gt�J1
2�gR�/g2,

�7�

and N̄z=4�−2N̄x. At a→�, they tend to the single-dot
values17 which are for t /R=0.1 Nx,y

�d��0.776 and Nz
�d�

�11.01. Using Ni
�d� instead of Ni�r� in Eq. �6� accurately

reproduces the single-dot FMR limit Hr
�d��1.15 kOe �esti-

mated from Fig. 2�b��. Otherwise, for decreasing interdot
distance a→d, the first-iteration values Eq. �7� used in Eq.
�6� well describe the tendency of Hr,av�a� toward the
continuous-film limit Hr

�f�=H0
2+4�2Ms

2−2�Ms�0.96 kOe
�Fig. 2�a��.

Finally, by calculating the true local FMR fields Hr�r�
from Eqs. �5� and �6�, the field-dependent absorption is ob-
tained as I�H�	r�R�(H−Hr�r�)dr. Then the FMR fields Hr

defined from the maximum of I�H� in two geometries display

FFA in good agreement with the experimental data �Fig. 2�.
This effect is due to the fact that stronger deformation of
magnetization more strongly suppresses the demagnetizing
effect �the differences Nz−Nx,y� and thus enhances Hr. Also it
produces a bigger spread of local resonance fields Hr�r� and
thus broadens the FMR line, again in agreement with our
observations.

In conclusion, it is shown that under in-plane magnetic
fields H even strong enough for FMR, the dipolar coupling
in a dense lattice of circular magnetic dots is able to produce
a continuous deformation of the dot magnetization, strongest
for the field orientation along lattice axes, leading to a spe-
cific fourfold anisotropy. The possible effect of weak
uniaxial �magnetocrystalline� anisotropy should be less sen-
sitive to this deformation and can be simply added to it �as in
Fig. 1�b��.
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APPENDIX

For fully planar and z-independent dot magnetization, the
dipolar energy per unit thickness of a dot in the lattice is

Ed =
1

2t
�

−t/2

t/2

dz�
−t/2

t/2

dz��
c

dr� dr�


,�

m
�r�

�
�2

�r
�r�

m��r��
�r − r��2 + �z − z��2

,

where the 2D integrations 	cdr and 	dr are, respectively,
over the unit cell and over the entire plane. It can also be
presented as

Ed =
1

2t
�

−t/2

t/2

dz�
c

dr




m
�r�ha�r,z�

=
1

4�ta2�
−t/2

t/2

dz�
−�

�

dq e−iqz


,g

m
,gh
,g,q,

where the Fourier amplitudes of the dipolar field are

h
,g,q = �
c

dr�
−�

�

dz ei�g·r+qz�ha�r,z�

= �
c

dr�
−�

�

dz ei�g·r+qz� � dr��
−t/2

t/2

dz�

� 

�

�2

�r
�r�

m��r��
�r − r��2 + �z − z��2

.

Then we express m��r�� through its Fourier amplitudes:

m��r�� =
1

a2

g�

e−ig�·r�m�,g�,

and introduce the factor ei�g�·r−qz�� into the integral in dr�dz,
and the compensating factor e−i�g�·r−qz�� into the integral in

FIG. 3. Density plots of the equilibrium magnetization angle
��r�. Top row: calculated from the sum Eq. �4� over 100�100 sites
of reciprocal lattice at parameter values a=1.1 �m, H=1.1 kOe,
Ms=0.83 kOe, for two field geometries �H= �a� 0 ��10�� and �b�
� /4 ��11��. Bottom row: micromagnetic calculation by OOMMF code
for the central disk in the 9�9 array for �c� �10� and �d� �11�
geometries.
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dr dz�. Then the spatial integrations in Ed are done according
to the formulas

�
c

dr ei�g−g��·r = a2�g,g�,

�
−t/2

t/2

dz�
−t/2

t/2

dz�eiq�z�−z� =
4

q2 sin2 qt

2
,

�
−�

�

dz�� dr�eig·�r−r��+iq�z−z�� �2

�r
�r�

1
�r − r��2 + �z − z��2

=
4�g
g�

g2 + q2 .

Finally, the momentum integration

�
−�

� sin2�qt/2�
q2�g2 + q2�

dq =
�t

2g2 f�gt�

leads to the result of Eq. �1�.
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