Direct and Indirect CP violation

- CP is not conserved in neutral kaon decay.
 - It makes more sense to use mass (or lifetime) eigenstates rather than $|K_1>$ and $|K_2>$:
 - “K-short”: short lifetime state with $\tau_s \approx 9 \times 10^{-11}$ sec.
 \[
 |K_S\rangle = \frac{1}{\sqrt{1 + |\epsilon|^2}} \left(|K_1\rangle + \epsilon |K_2\rangle\right)
 \]
 - “K-long”: long lifetime state with $\tau_L \approx 5 \times 10^{-8}$ sec.
 \[
 |K_L\rangle = \frac{1}{\sqrt{1 + |\epsilon|^2}} \left(|K_2\rangle + \epsilon |K_1\rangle\right)
 \]
 - ϵ is a (small) complex number that allows for CP violation through mixing.

- There are two types of CP violation in K_L decay:
 - Indirect (“mixing”): $K_L \to \pi\pi$ because of its K_1 component
 - Direct: $K_L \to \pi\pi$ because the amplitude for K_2 allows $K_2 \to \pi\pi$
 - Experimental observation: indirect $>>$ direct!

- The strong interaction eigenstates with definite strangeness are:
 - $K^0 = |\bar{s}d\rangle$ and $\bar{K}^0 = |sd\rangle$
 - Consider the strangeness operator:
 \[
 S|K^0\rangle = |K^0\rangle \quad \text{and} \quad S|\bar{K}^0\rangle = -|\bar{K}^0\rangle
 \]
 - They are particle and anti-particle and by the CPT theorem have the same mass.
 - Experimentally we find:
 \[
 (m_{K^0} - m_{\bar{K}^0})/m < 9 \times 10^{-19}
 \]
The K_L and K_S states are not CP (or S) eigenstates:

$$CP|K_S\rangle = \frac{1}{\sqrt{1+|\varepsilon|^2}} (CP|K_1\rangle + \varepsilon CP|K_2\rangle) = \frac{1}{\sqrt{1+|\varepsilon|^2}} (|K_1\rangle - \varepsilon |K_2\rangle) \neq |K_S\rangle$$

$$CP|K_L\rangle = \frac{1}{\sqrt{1+|\varepsilon|^2}} (CP|K_2\rangle + \varepsilon CP|K_1\rangle) = \frac{1}{\sqrt{1+|\varepsilon|^2}} (-|K_2\rangle + \varepsilon |K_1\rangle) \neq |K_L\rangle$$

- In fact these states are not orthogonal:

$$\langle K_S | K_L \rangle = \frac{2 \text{Re} \varepsilon}{1+|\varepsilon|^2} \neq 0$$

- If CP violation is due to mixing (“indirect” only):
 - The amplitude for $K_L \rightarrow \pi\pi$:
 $$\langle K_1 | K_L \rangle = \frac{1}{\sqrt{1+|\varepsilon|^2}} (\langle K_1 | K_2 \rangle + \varepsilon \langle K_1 | K_1 \rangle) = \frac{\varepsilon}{\sqrt{1+|\varepsilon|^2}}$$
 - The amplitude for $K_L \rightarrow \pi\pi\pi$:
 $$\langle K_2 | K_L \rangle = \frac{1}{\sqrt{1+|\varepsilon|^2}} (\langle K_2 | K_2 \rangle + \varepsilon \langle K_2 | K_1 \rangle) = \frac{1}{\sqrt{1+|\varepsilon|^2}}$$

- Experimental measurement: $|\varepsilon| = 2.3 \times 10^{-3}$.
- The standard model predicts a small amount of direct CP violation too!
Direct CP violation

- Standard model predicts that quantities η_{+-} and η_{00} should differ very slightly due to direct CP violation:

$$
\eta_{+-} = \frac{\text{Amp}(K_L \rightarrow \pi^+\pi^-)}{\text{Amp}(K_S \rightarrow \pi^+\pi^-)} \quad \eta_{00} = \frac{\text{Amp}(K_L \rightarrow \pi^0\pi^0)}{\text{Amp}(K_S \rightarrow \pi^0\pi^0)}
$$

- This is CP violation in the amplitude.

- CP violation is now described by two complex parameters, ϵ and ϵ':
 - ϵ' is related to direct CP violation.
 - The standard model estimates:
 \[
 \text{Re}(\frac{\epsilon'}{\epsilon}) \sim (4-30) \times 10^{-4}
 \]
 - Experimentally what is measured is the ratio of branching ratios:
 \[
 \frac{\text{BR}(K_L \rightarrow \pi^+\pi^-)}{\text{BR}(K_S \rightarrow \pi^+\pi^-)} \frac{\text{BR}(K_L \rightarrow \pi^0\pi^0)}{\text{BR}(K_S \rightarrow \pi^0\pi^0)} = \left| \frac{\eta_{+-}}{\eta_{00}} \right|^2 = \left| \frac{\epsilon + \epsilon'}{\epsilon - 2\epsilon'} \right|^2 \approx 1 + 6 \text{Re}\left(\frac{\epsilon'}{\epsilon} \right)
 \]

- There were multiple attempts to measure the ratio since 1970's with some controversial results.
 - A non-zero value has recently been measured by 2 different experiments:
 \[
 \text{Re}(\frac{\epsilon'}{\epsilon}) = (17.2 \pm 1.8) \times 10^{-4}
 \]
 - Currently the measurement is more precise than the theoretical calculation!
 - Calculating $\text{Re}(\frac{\epsilon'}{\epsilon})$ is presently one of the most challenging HEP theory projects.
Neutral Kaons and Strangeness Oscillations

- We now consider how the neutral kaon state evolves with time:
 - allow us to measure K_L, K_S mass difference and phases of the CP violation parameters, η_{+-} and η_{00}.
- How a two-particle quantum system evolves in time is covered in many texts including:
 - *Particle Physics, Martin and Shaw, section 10.3*
 - *Introduction to High Energy Physics, Perkins*
 - *Introduction to Nuclear and Particle Physics, Das and Ferbel*
 - *Lectures on Quantum Mechanics, Baym, Ch 2.*
 - *The Feynman Lectures, Vol III, section 11-5.*
 - Written in about 1963, before there was good experimental data on this topic!
 - CP violation was discovered in 1964.
- The following derivation is for the neutral kaon system.
 - It is also applicable to B-meson and neutrino oscillations.
Kaon Oscillations

- First, consider the case where CP is conserved.
 - CP eigenstates \(|K_1>| and \(|K_2>| are solutions to the time dependent Schrödinger equation:
 \[i\hbar \frac{\partial |\psi(t)\rangle}{\partial t} = H_{\text{eff}} |\psi(t)\rangle \]
 - \(H_{\text{eff}}\) is a phenomenological Hamiltonian that describes the system.
 - Since our particles can decay, \(H_{\text{eff}}\) is not a Hermitian operator!
 - Since there are two states in this problem it is customary:
 - Describe \(H_{\text{eff}}\) by a 2x2 matrix (e.g. see Das and Ferbel Chapter XII).
 - Describe \(|K_1>| and \(|K_2>| by column vectors.
 - \(H_{\text{eff}}\) matrix is written in terms of the masses \((m_1, m_2)\) and lifetimes \((\tau_1, \tau_2)\) of the two states:
 \[
 H_{\text{eff}} = \begin{pmatrix}
 \frac{1}{2} (m_1 + m_2) - \frac{i}{4} \hbar \left(\frac{1}{\tau_1} + \frac{1}{\tau_2} \right) & \frac{1}{2} (m_2 - m_1) - \frac{i}{4} \hbar \left(\frac{1}{\tau_2} - \frac{1}{\tau_1} \right) \\
 \frac{1}{2} (m_2 - m_1) - \frac{i}{4} \hbar \left(\frac{1}{\tau_2} - \frac{1}{\tau_1} \right) & \frac{1}{2} (m_1 + m_2) - \frac{i}{4} \hbar \left(\frac{1}{\tau_1} + \frac{1}{\tau_2} \right)
 \end{pmatrix}
 \]
 - The eigenvalues and eigenvectors of \(H_{\text{eff}}\) are:
 \[
 \begin{align*}
 H_{\text{eff}} |K_1(t)\rangle &= (m_1 - \frac{i\hbar}{2\tau_1}) |K_1(t)\rangle \quad \text{with } |K_1(t)\rangle = \begin{pmatrix} +f_1(t) \\ -f_1(t) \end{pmatrix} \\
 H_{\text{eff}} |K_2(t)\rangle &= (m_2 - \frac{i\hbar}{2\tau_2}) |K_2(t)\rangle \quad \text{with } |K_2(t)\rangle = \begin{pmatrix} +f_2(t) \\ -f_2(t) \end{pmatrix}
 \end{align*}
 \]
 - The states are orthogonal to each other: \(<K_1(t)|K_2(t)> = <K_2(t)|K_1(t)> = 0.\]

[\text{f}(t)\text{ contains the time dependence.}]

- The solutions to the Hamiltonian:
 \[
 |K_1(t)\rangle = e^{-\frac{i}{\hbar} \left(\frac{m_1}{2\tau_1} - \frac{i\hbar}{2\tau_1} \right) t} |K_1\rangle \\
 |K_2(t)\rangle = e^{-\frac{i}{\hbar} \left(\frac{m_2}{2\tau_2} - \frac{i\hbar}{2\tau_2} \right) t} |K_2\rangle
 \]
Neutral Kaons and Strangeness Oscillations

- Consider an experiment which produces a beam of pure K^0's (at $t = 0$) using the strong interaction: $\pi p \rightarrow \Lambda K^0$
- As in the previous lecture, we can express a K^0 as of a mixture of $|K_1>$ and $|K_2>$ (and visa versa):
 $$|K_1\rangle = \frac{1}{\sqrt{2}} \left(|K^0\rangle + |\bar{K}^0\rangle \right) \quad |K_2\rangle = \frac{1}{\sqrt{2}} \left(|K^0\rangle - |\bar{K}^0\rangle \right)$$
 $$|K^0\rangle = \frac{1}{\sqrt{2}} \left(|K_1\rangle + |K_2\rangle \right) \quad |\bar{K}^0\rangle = \frac{1}{\sqrt{2}} \left(|K_1\rangle - |K_2\rangle \right)$$
- Using the time dependent solutions for K_1 and K_2 we can find the time dependent solution for K^0:
 $$|K^0(t)\rangle = \frac{1}{\sqrt{2}} \left(e^{\frac{-i}{\hbar}(m_1-\frac{ih}{2\tau_1})t} |K_1\rangle + e^{\frac{-i}{\hbar}(m_2-\frac{ih}{2\tau_2})t} |K_2\rangle \right)$$
- The amplitude for finding a K^0 in the beam at a later time (t) is given by:
 $$\langle K^0 | K^0(t) \rangle = \frac{1}{2} \left(\langle K_1 | + \langle K_2 | \right) e^{\frac{-i}{\hbar}(m_1-\frac{ih}{2\tau_1})t} |K_1\rangle + e^{\frac{-i}{\hbar}(m_2-\frac{ih}{2\tau_2})t} |K_2\rangle$$
 $$= \frac{1}{2} \left(e^{\frac{-i}{\hbar}(m_1-\frac{ih}{2\tau_1})t} + e^{\frac{-i}{\hbar}(m_2-\frac{ih}{2\tau_2})t} \right)$$
Neutral Kaons and Strangeness Oscillations

The probability to find a K^0 in the beam at a later time is given by:

\[
\left| \left\langle K^0 \left| K^0(t) \right. \right\rangle \right|^2 = \frac{1}{4} \left(e^{\frac{i}{\hbar} (m_1 + i\hbar \frac{t}{2\tau_1})} + e^{\frac{i}{\hbar} (m_2 + i\hbar \frac{t}{2\tau_2})} + e^{\frac{i}{\hbar} (m_1 - i\hbar \frac{t}{2\tau_1})} + e^{\frac{i}{\hbar} (m_2 - i\hbar \frac{t}{2\tau_2})} \right)
\]

\[
= \frac{1}{4} \left(e^{-\frac{t}{\tau_1}} + e^{-\frac{t}{\tau_2}} + e^{\frac{i}{\hbar} (m_1 - m_2 + i\hbar \frac{t}{2\tau_1})} + e^{\frac{i}{\hbar} (m_1 - m_2 - i\hbar \frac{t}{2\tau_2})} \right)
\]

\[
= \frac{1}{4} \left(e^{-\frac{t}{\tau_1}} + e^{-\frac{t}{\tau_2}} + e^{\frac{i}{\hbar} (m_2 - m_1 + i\hbar \frac{t}{2\tau_1})} + e^{\frac{i}{\hbar} (m_2 - m_1 - i\hbar \frac{t}{2\tau_2})} \right)
\]

\[
= \frac{1}{4} \left(e^{-\frac{t}{\tau_1}} + e^{-\frac{t}{\tau_2}} + e^{\frac{i}{\hbar} (m_2 - m_1 + \frac{t}{2\tau_1})} + e^{\frac{i}{\hbar} (m_2 - m_1 - \frac{t}{2\tau_2})} \right)
\]

\[
= \frac{1}{4} \left(e^{-\frac{t}{\tau_1}} + e^{-\frac{t}{\tau_2}} + 2 e^{-\frac{t}{2\tau_1}} \cos \left(\frac{t}{\hbar} (m_2 - m_1) \right) \right)
\]

To make the units come out right in the cos term substitute $(m_2-m_1)c^2$ for (m_2-m_1).

- The third term in the above equation is an interference term.
- It causes an oscillation that depends on the mass difference between $|K_1>$ and $|K_2>$.
- Observation of neutrino oscillation implies that neutrinos must have mass.

K.K. Gan

L7: CP Violation
Flavor Oscillations

- Using the same procedure, we can calculate the probability that a beam initially consisting of K^0's contains \bar{K}^0's at a later time:

$$\left|\langle \bar{K}^0 | K^0 (t) \rangle \right|^2 = \frac{1}{4} \left(e^{-\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_2}} - 2e^{-\frac{t}{2(\frac{1}{\tau_1} + \frac{1}{\tau_2})}} \cos \left(\frac{t}{\hbar} (m_2 - m_1)\right) \right)$$

- The sign of the interference term is now “-”.
- Since the strangeness of a K^0 differs from a \bar{K}^0's, the strangeness content of the beam is changing as a function of time.
 - This phenomena is called *strangeness* oscillations.
 - More generally we call this phenomena *flavor* oscillations:
 - It also occurs with B-mesons (b quark oscillations) and neutrinos (e.g. $\nu_e \Leftrightarrow \nu_\mu$).

- We can measure the strangeness content of a beam as a function of time (distance):
 - put some material in the beam
 - counting the number of strong interactions with $S = +1$ in the final state vs. number with $S = -1$:
 - $K^0 \ p \rightarrow K^+ n \quad S = +1$
 - $\bar{K}^0 \ p \rightarrow \Lambda p \quad S = -1$

Strangeness oscillations for an initially pure K^0 beam. A value of $(m_2 - m_1)\tau_1 = 0.5$ is used.
CP Violation

- **CP** violation requires modifying H_{eff} to include additional complex parameters.
 - The details of the derivation are given in many texts.
 - e.g. *Weak Interactions of Leptons and Quarks* by Commins and Bucksbaum.

- **CP** violation can be measured using the following procedure:
 - produce a beam that is K^0 initially
 - measure the yield of $\pi^+\pi^-$ decays as a function of proper time, time measured in the rest frame of K^0.
 - This is a measure of the sum of the square of the amplitude $|K_L \to \pi^+\pi^-|$ and $|K_S \to \pi^+\pi^-|$.
 - There will be an interference term in the number of $\pi^+\pi^-$ decays per unit time ($\equiv I(t)$).
 - The yield of $\pi^+\pi^-$ decays is given by:
 \[
 I_{\pi^+\pi^-}(t) = I_{\pi^+\pi^-}(0) \left(e^\frac{-t}{\tau_s} + |\eta_{+-}|^2 e^\frac{-t}{\tau_L} + 2|\eta_{+-}| e^\frac{-t}{2(\tau_s + \tau_L)} \cos\left(\frac{t}{\hbar} (m_2 - m_1) + \phi_{+-} \right) \right)
 \]
 - measuring this yield provides information on:
 - the mass difference and the **CP** violation parameters η_{+-}^+ and ϕ_{+-}^+.

Event rate for $\pi^+\pi^-$ decays as a function of proper time. The best fit requires interference between the K_L and K_S amplitudes:

- $m_2 - m_1 = (3.491 \pm 0.009)x10^{-6}$ eV
- $|\eta_{+-}| = (2.29 \pm 0.01)x10^{-3}$
- $\phi_{+-} = (43.7 \pm 0.6)^0$
- $\tau_S = 0.893x10^{-10}$ sec
- $\tau_L = 0.517x10^{-7}$ sec