The parity operator acting on a wavefunction:

\[P \Psi(x, y, z) = \Psi(-x, -y, -z) \]

\[P^2 \Psi(x, y, z) = P \Psi(-x, -y, -z) = \Psi(x, y, z) \]

☞ \(P^2 = I \)
☞ Parity operator is unitary.

If the interaction Hamiltonian \((H) \) conserves parity

☞ \([H,P] = 0 \)
☞ \(P_i = P_f \)

What is the eigenvalue \((P_a) \) of the parity operator?

\[P \Psi(x, y, z) = \Psi(-x, -y, -z) = P_a \Psi(x, y, z) \]
\[P^2 \Psi(x, y, z) = P_a P \Psi(x, y, z) = (P_a)^2 \Psi(x, y, z) = \Psi(x, y, z) \]
\[P_a = 1 \text{ or } -1 \]
☞ The quantum number \(P_a \) is called the intrinsic parity of a particle.
 ◆ If \(P_a = 1 \) the particle has even parity.
 ◆ If \(P_a = -1 \) the particle has odd parity.

If the overall wavefunction of a particle (or system of particles) contains spherical harmonics
☞ we must take this into account to get the total parity of the particle (or system of particles).

For a wavefunction containing spherical harmonics:

\[P \Psi(r, \theta, \phi) = PR(r)Y_m^l (\theta, \phi) = (-1)^l R(r)Y_m^l (\theta, \phi) \]
☞ The parity of the particle: \(P_a (-1)^l \)
★ Parity is a multiplicative quantum number.

Parity Operator and Eigenvalue
Parity of Particles

- The parity of a state consisting of particles a and b:
 \[(-1)^L P_a P_b \]
 - L is their relative orbital momentum.
 - P_a and P_b are the intrinsic parity of the two particles.
 - Strictly speaking parity is only defined in the system where the total momentum $p = 0$ since the parity operator (P) and momentum operator anticommute, $Pp = -p$.

- How do we know the parity of a particle?
 - By convention we assign positive intrinsic parity (+) to spin 1/2 fermions:
 +parity: proton, neutron, electron, muon (μ)
 - Anti-fermions have opposite intrinsic parity.
 - Bosons and their anti-particles have the same intrinsic parity.
 - What about the photon?
 - Strictly speaking, we can not assign a parity to the photon since it is never at rest.
 - By convention the parity of the photon is given by the radiation field involved:
 - electric dipole transitions have + parity.
 - magnetic dipole transitions have – parity.
 - We determine the parity of other particles (π, K...) using the above conventions and assuming parity is conserved in the strong and electromagnetic interaction.
 - Usually we need to resort to experiment to determine the parity of a particle.
Parity of Pions

- Example: determination of the parity of the π using $\pi d \rightarrow nn$.
 - For this reaction we know many things:
 - $s_\pi = 0$, $s_n = 1/2$, $s_d = 1$, orbital angular momentum $L_d = 0$, $J_d = 1$
 - We know (from experiment) that the π is captured by the d in an s-wave state.
 - The total angular momentum of the initial state is just that of the d ($J = 1$).
 - The isospin of the nn system is 1 since d is an isosinglet and the π has $I = |1,-1>$
 - $|1,-1>$ is symmetric under the interchange of particles. (see below)
 - The final state contains two identical fermions
 - Pauli Principle: wavefunction must be anti-symmetric under the exchange of the two neutrons.
 - Let’s use these facts to pin down the intrinsic parity of the π.
 - Assume the total spin of the nn system $= 0$.
 - The spin part of the wavefunction is anti-symmetric:
 $$|0,0> = (2)^{-1/2}[|1/2,1/2>|1/2-1/2> + |1/2,-1/2>|1/2,1/2>$$
 - To get a totally anti-symmetric wavefunction L must be even (0, 2, 4…)
 - Cannot conserve momentum ($J = 1$) with these conditions!
 - Assume the total spin of the nn system $= 1$.
 - The spin part of the wavefunction is symmetric:
 $$|1,1> = |1,1/2,1/2>|1/2,1/2>$$
 $$|1,0> = (2)^{-1/2}[|1/2,1/2>|1/2-1/2> + |1/2,-1/2>|1/2,1/2>$$
 $$|1,-1> = |1/2,-1/2>|1/2,-1/2>$$
 - To get a totally anti-symmetric wavefunction L must be odd (1, 3, 5…)
 - $L = 1$ consistent with angular momentum conservation: nn has $s = 1$, $L = 1$, $J = 1 \rightarrow ^3P_1$
 - Parity of the final state: $P_n P_n (-1)^L = (+)(+)(-1)^1 = -$
 - Parity of the initial state: $P_\pi P_d (-1)^L = P_\pi (+)(-1)^0 = P_\pi$
 - Parity conservation: $P_\pi = -$
Spin Parity of Particles

- There is other experimental evidence that the parity of the π is -:
 - The reaction $\pi d \rightarrow nn\pi^0$ is not observed.
 - The polarization of γ's from $\pi^0 \rightarrow \gamma\gamma$.

- Spin-parity of some commonly known particles:

<table>
<thead>
<tr>
<th>State</th>
<th>Spin</th>
<th>Parity</th>
<th>Particle</th>
</tr>
</thead>
<tbody>
<tr>
<td>pseudoscalar (0⁻)</td>
<td>0</td>
<td>-</td>
<td>π, K</td>
</tr>
<tr>
<td>scalar (0⁺)</td>
<td>0</td>
<td>+</td>
<td>$a_0, \text{Higgs (not observed yet)}$</td>
</tr>
<tr>
<td>vector (1⁻)</td>
<td>1</td>
<td>-</td>
<td>$\gamma, \rho, \omega, \phi, \psi, \Upsilon$</td>
</tr>
<tr>
<td>pseudovector (axial vector) (1⁺)</td>
<td>1</td>
<td>+</td>
<td>a_1</td>
</tr>
</tbody>
</table>
θ–τ Puzzle

- How well is parity conserved?
 - Very well in strong and electromagnetic interactions (10^{-13})
 - Not at all in the weak interaction!

- In the mid-1950’s it was noticed that there were 2 charged particles that had (experimentally) consistent masses, lifetimes, and spin = 0, but very different weak decay modes:
 - $\theta^+ \rightarrow \pi^+ \pi^0$
 - $\tau^+ \rightarrow \pi^+ \pi^\pm \pi^+$

 - The parity of $\theta^+ = +$ while the parity of $\tau^+ = -$.
 - Some physicists said the θ^+ and τ^+ were different particles, and parity was conserved.
 - Lee and Yang said they were the same particle but parity was not conserved in weak interaction!
 - Awarded Nobel Prize when parity violation was discovered.
Parity Violation in β-decay

- Classic experiment of Wu et. al. (Phys. Rev. V105, Jan. 15, 1957) looked at β spectrum:

$$^{60}_{27}Co \rightarrow ^{60}_{28}Ni^* + e^- + \nu_e$$
$$^{60}_{28}Ni^* \rightarrow ^{60}_{28}Ni^* + \gamma(1.17) + \gamma(1.33)$$

- Parity transformation reverses all particle momenta while leaving spin angular momentum ($r \times p$) unchanged.
 - Parity invariance requires equal rate for (a) and (b).
 - Fewer electrons are emitted in the forward hemisphere.
 - An forward-backward asymmetry in the decay.
 - 3 other papers reporting parity violation published within a month of Wu et. al.!
Charge Conjugation

- Charge Conjugation \((C)\) turns particles into anti-particles and visa versa.

 \[
 \begin{align*}
 C(\text{proton}) & \rightarrow \text{anti-proton} & C(\text{anti-proton}) & \rightarrow \text{proton} \\
 C(\text{electron}) & \rightarrow \text{positron} & C(\text{positron}) & \rightarrow \text{electron}
 \end{align*}
 \]

- The operation of Charge Conjugation changes the sign of all intrinsic additive quantum numbers:
 - electric charge, baryon #, lepton #, strangeness, etc.
 - Variables such as momentum and spin do not change sign under \(C\).

- The eigenvalues of \(C\) are \(\pm 1\):
 \[
 \begin{align*}
 C|\psi\rangle &= |\bar{\psi}\rangle = C_\psi |\psi\rangle \\
 C^2|\psi\rangle &= C^2_\psi |\psi\rangle = |\psi\rangle \\
 \Rightarrow C^2_\psi &= 1
 \end{align*}
 \]
 - \(C_\psi\) is sometimes called the “charge parity” of the particle.
 - Like parity, \(C_\psi\) is a multiplicative quantum number.
 - If an interaction conserves \(C\)
 \[[H,C]|\psi\rangle = 0 \]
 - Strong and electromagnetic interactions conserve \(C\).
 - Weak interaction violates \(C\) conservation.
Most particles are not eigenstates of C.

Consider a proton with electric charge q.

Let Q be the charge operator:

$Q|q\rangle = q|q\rangle$

$CQ|q\rangle = qC|q\rangle = q|-q\rangle$

$QC|q\rangle = Q|-q\rangle = -q|-q\rangle$

$[C,Q]|q\rangle = [CQ-QC]|q\rangle = 2q|-q\rangle$

C and Q do not commute unless $q = 0$.

We get the same result for all additive quantum numbers!

Only particles that have all additive quantum numbers $= 0$ are eigenstates of C.

e.g. $\gamma, \rho, \omega, \phi, \psi, Y$

These particle are said to be “self conjugate”.
Charge Conjugation of Photon and π^0

- How do we assign C_ψ to particles that are eigenstates of C?
 - Photon: Consider the interaction of the photon with the electric field.
 - As we previously saw the interaction Lagrangian of a photon is:
 $$L_{EM} = J_u A_u$$
 - J_u is the electromagnetic current density and A_u the vector potential.
 - By definition, C changes the sign of the EM field.
 - In QM, an operator transforms as:
 $$CJC^{-1} = -J$$
 - Since C is conserved by the EM interaction:
 $$CL_{EM}C^{-1} = L_{EM}$$
 $$CJ_u A_u C^{-1} = J_u A_u$$
 $$CJ_u C^{-1} CA_u C^{-1} = -J_u C A_u C^{-1} = J_u A_u$$
 $$C A_u C^{-1} = -A_u$$
 - The photon (as described by A) has $C = -1$.
 - A state that is a collection of n photons has $C = (-1)^n$.

- π^0: Experimentally we find that the π^0 decays to 2 γs and not 3 γs.
 - $$\frac{BR(\pi^0 \rightarrow \gamma\gamma)}{BR(\pi^0 \rightarrow \gamma\gamma)} < 4 \times 10^{-7}$$
 - This is an electromagnetic decay so C is conserved:
 $$C_\pi = (-1)^2 = +1$$
 - Particles with the same quantum numbers as the photon (γ, ρ, ω, ϕ, ψ, Y) have $C = -1$.
 - Particles with the same quantum numbers as the π^0 (η, η') have $C = +1$.
Handedness of Neutrinos

- Assuming massless neutrinos, we find experimentally:
 - All neutrinos are left handed.
 - All anti-neutrinos are right handed.
 - Left handed: spin and z component of momentum are anti-parallel.
 - Right handed: spin and z component of momentum are parallel.
- This left/right handedness is illustrated in $\pi^+ \rightarrow l^+ \nu_l$ decay:
 \[
 \frac{BR(\pi^+ \rightarrow e^+ \nu_e)}{BR(\pi^+ \rightarrow \mu^+ \nu_\mu)} = 1.23 \times 10^{-4}
 \]
 - If neutrinos were not left handed, the ratio would be > 1!

- Angular momentum conservation forces the charged lepton (e, μ) to be in “wrong” handed state:
 - a left handed positron (e^+).
 - The probability to be in the wrong handed state $\sim m_l^2$

\[
\frac{BR(\pi^+ \rightarrow e^+ \nu_e)}{BR(\pi^+ \rightarrow \mu^+ \nu_\mu)} = \frac{m_e^2}{m_\mu^2} \frac{m_\pi^2 - m_e^2}{m_\pi^2 - m_\mu^2} \approx (1.230 \pm 0.004) \times 10^{-4}
\]

- Handedness $\sim 2 \times 10^{-5}$
- Phase space ~ 5
Charge Conjugation and Parity

- In the strong and EM interaction C and P are conserved separately.
 - In the weak interaction we know that C and P are not conserved separately.
 - The combination of CP should be conserved!

- Consider how a neutrino (and anti-neutrino) transforms under C, P, and CP.
 - Experimentally we find that all neutrinos are left handed and anti-neutrinos are right handed.

CP should be a good symmetry.
Neutral Kaons and CP violation

- In 1964 it was discovered that the decay of neutral kaons sometimes (10^{-3}) violated CP!
 - The weak interaction does not always conserve CP!
 - In 2001 CP violation was observed in the decay of B-mesons.
- CP violation is one of the most interesting topics in physics:
 - The laws of physics are **different** for particles and anti-particles!
 - What causes CP violation?
 - It is included into the Standard Model by Kobayashi and Maskawa (Nobel Prize 2008).
 - Is the CP violation observed with B’s and K’s the same as the cosmological CP violation?
- To understand how CP violation is observed with K’s and B’s need to discuss **mixing**.
 - Mixing is a QM process where a particle can turn into its anti-particle!
 - As an example, lets examine neutral kaon mixing first (B-meson mixing later):
 - $K^0 = \bar{s}d, \bar{K}^0 = s\bar{d}$
 - In terms of quark content these are particle and anti-particle.
 - The K^0 has the following additive quantum numbers:
 - strangeness = +1
 - charge = baryon # = lepton # = charm = bottom = top = 0
 - $I_3 = -1/2$
 - The K^0’s isospin partner is the K^+ (I_3 changes sign for anti-particles.)
 - The K^0 and \bar{K}^0 are produced by the strong interaction and have definite strangeness.
 - They cannot decay via the strong or electromagnetic interaction.
Neutral Kaons, Mixing, and CP violation

- The neutral kaon decays via the weak interaction, which does not conserve strangeness.

 - Let’s assume that the weak interaction conserves CP.

 - The K^0 and \bar{K}^0 are not the particles that decay weakly since they are not CP eigenstates:

 $\begin{align*}
 P\left|K^0\right\rangle &= -\left|K^0\right\rangle \\
 P\left|\bar{K}^0\right\rangle &= -\left|\bar{K}^0\right\rangle \\
 C\left|K^0\right\rangle &= -\left|K^0\right\rangle \\
 C\left|\bar{K}^0\right\rangle &= -\left|\bar{K}^0\right\rangle \\
 CP\left|K^0\right\rangle &= \left|\bar{K}^0\right\rangle \\
 CP\left|\bar{K}^0\right\rangle &= \left|K^0\right\rangle
 \end{align*}$

 - We can make CP eigenstates out of a linear combination of K^0 and \bar{K}^0:

 $\begin{align*}
 \left|K_1\right\rangle &= \frac{1}{\sqrt{2}}\left(\left|K^0\right\rangle + \left|\bar{K}^0\right\rangle\right) \\
 \left|K_2\right\rangle &= \frac{1}{\sqrt{2}}\left(\left|K^0\right\rangle - \left|\bar{K}^0\right\rangle\right)
 \end{align*}$

 - If CP is conserved in the decay of K_1 and K_2 then we expect the following decay modes:

 - $K_1 \rightarrow$ two pions ($\pi^+\pi^-$ or $\pi^0\pi^0$) ($CP = +1$ states)
 - $K_2 \rightarrow$ three pions ($\pi^+\pi^0\pi^0$ or $\pi^0\pi^0\pi^0$) ($CP = -1$ states)

 ★ In 1964 it was found that every once in a while ($\approx 1/500$) $K_2 \rightarrow$ two pions!
Neutral Kaons

- The K^0 and \bar{K}^0 are eigenstates of the strong interaction.
 - These states have definite strangeness, are not CP eigenstates
 - They are particle/anti-particle.
 - They are produced in strong interactions (collisions) e.g.
 \[\pi^- p \rightarrow K^0 \Lambda \text{ or } K^0 \Sigma^0 \]

- The K_1 and K_2 are eigenstates of the weak interaction, assuming CP is conserved.
 - These states have definite CP but are not strangeness eigenstates.
 - Each is its own anti-particle.
 - These states decay via the weak interaction and have different masses and lifetimes.
 \[K_1 \rightarrow \pi^0 \pi^0 \quad K_2 \rightarrow \pi^0 \pi^0 \pi^0 \]

- 1955: Gell-Mann/Pais pointed out there was more decay energy (phase space) available for K_1 than K_2.
 - K_1 and K_2 lifetimes should be very different.
 \[m_K - 2m_\pi = 219 \text{ MeV/c}^2 \quad m_K - 3m_\pi \approx 80 \text{ MeV/c}^2 \]
 - Expect K_1 to have the shorter lifetime.
 - The lifetimes were measured to be:
 \[\tau_1 \approx 9\times10^{-11} \text{ sec} \quad (1947-53) \]
 \[\tau_2 \approx 5\times10^{-8} \text{ sec} \quad (\text{Lande et. al., Phys. Rev. V103, 1901 (1956)}) \]

- We can use the lifetime difference to produce a beam of K_2’s from a beam of K^0’s.
 - Produce K^0’s using $\pi p \rightarrow K^0 \Lambda$.
 - Let the beam of K^0’s propagate in vacuum until the K_1 component dies out.
 - 1 GeV/c K_1 travels on average $\approx 5.4 \text{ cm}$
 - 1 GeV/c K_2 travels on average $\approx 3100 \text{ cm}$
 - Need to put detector 100-200 m away from target.
Mixing and CP violation

- How do we look for CP violation with a K_2 beam?
 - Look for decays that have $CP = +1$:
 \[K_2 \to \pi^+\pi^- \text{ or } \pi^0\pi^0 \]
 - Experimentally we find:
 - $K_2 \to \pi^+\pi^- \sim 0.2\%$ of the time
 - $K_2 \to \pi^0\pi^0 \sim 0.1\%$ of the time
 - Can also look for differences in decays that involve matter and anti-matter:
 \[\delta(e) = \frac{BR(K_2 \to \pi^-e^+\nu_e) - BR(K_2 \to \pi^+e^-\overline{\nu_e})}{BR(K_2 \to \pi^-e^+\nu_e) + BR(K_2 \to \pi^+e^-\overline{\nu_e})} = 0.333 \pm 0.014 \]
 \[\delta(\mu) = \frac{BR(K_2 \to \pi^-\mu^+\nu_\mu) - BR(K_2 \to \pi^+\mu^-\overline{\nu}_\mu)}{BR(K_2 \to \pi^-\mu^+\nu_\mu) + BR(K_2 \to \pi^+\mu^-\overline{\nu}_\mu)} = 0.303 \pm 0.025 \]
 - Nature differentiates between matter and antimatter!

- CP violation has recently (2001) been unambiguously measured in the decay of B-mesons.
 - This is one of the most interesting areas in HEP (will be discussed later).
 - Observing CP violation with B-mesons is much more difficult than with kaons!
 - B_S and B_L have essentially the same lifetime
 - No way to get a beam of B_L and look for “forbidden” decay modes.
 - It is much harder to produce large quantities of B-mesons than kaons.

Christenson et. al. PRL V13, 138 (1964)