
1

12.  Rolling, Torque, and Angular Momentum

Rolling Motion:
  • A motion that is a combination of rotational

and translational motion,  e.g. a wheel rolling
down the road.

  • Will only consider rolling with out slipping.

For a disk or sphere rolling along a horizontal
surface, the motion can be considered in two
ways:

  I. Combination of rotational and translational
motion:
• Center of mass moves in a translational

motion.
• The rest of the body is rotating around the

center of mass.
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vcm
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    II. Pure Rotational Motion:
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  • The whole object is revolving around a
point on the object in contact with the
surface.

• The point of contact changes with time.
• Most people find method I simpler to

understand.

vrel gnd
Þ

axis of rotation

Use method I to analyze rolling without
slipping:

R

Rd = 2

θ

π

  • When the object makes one complete
revolution, the object has moved a distance
equal to the circumference, and each point on
the exterior has touched the ground once.

  • When the object rotates through an angle θ,
the distance that the center of mass has
moved is:
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s = Rθ

vcm = R
dθ
dt

= Rω
where ω is the angular velocity of one object
rotating about its center of mass.  This looks very
similar to the relationship between angular
velocity and the translational velocity of a point
on a rotating object:

v = Rω
  • vcm is the velocity of the center of mass with

respect to the ground for the rolling motion.
  • v is the velocity of a point on the object with

respect to the axis of rotation.
The velocity of any point on the disk as seen

by an observer on the ground is the vector sum
of the velocity with respect to the center of mass
and the velocity of the center of mass with
respect to the ground:

  
r 
v gnd = r 

v rel cm + r 
v cm (1)
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Consider the point on the top of the wheel:

R
v

v v

cm

cmrel cm
Þ

Þ

Þ

vrel cm = +Rω

vcm = Rω

(1):          vgnd = Rω + vcm

= vcm + vcm

= 2vcm
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The point on the top of the wheel has a speed
(relative to the ground) that is twice the
velocity of the center of mass.

Consider the point in contact with the
ground:

R

v

v v

cm

cmrel cm

Þ

ÞÞ

vrel cm = −Rω

vcm = Rω
vgnd = −Rω + Rω = 0

The point in contact with the ground has a
speed of zero, i.e. momentarily at rest.

H If your car is traveling down the highway at
70 mph, the tops of your wheels are going 140
mph while the bottoms of the wheels are
going 0 mph.

Consider a disk rolling down a ramp without
slipping:
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h

θ

R

Assuming the disk is initially at rest:
  • What makes the disk start rolling?
  • What is the translational speed of its center of

mass when it reaches the bottom of the ramp?
  • What is its angular velocity when it reaches

the bottom of the ramp?

f
N

mg

H We need to find the torque that makes the
disk start rolling.  Consider the rotation
around the center of mass:
  • The force of gravity acts at the center of

mass and hence produces no torque.
  • The normal force has zero level arm and

hence produces no torque.
  • The force of friction provides the torque!
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  • If the object is rolling without slipping, the
friction force is static friction.

  • If the ramp is frictionless, the disk will
slide down without rotation.

H The velocity and angular velocity at the
bottom of the ramp can be calculated using
energy conservation.  The kinetic energy can
be written as a sum of translational and
rotational kinetic energy:

Ktot = Ktrancm + Krot rel tocm

= 1
2 mvcm

2 + 1
2 Icmω 2

where ω is the angular speed of the rotation
relative to the center of mass and Icm is the
moment of inertia around an axis passing
through the center of mass.

Conservation of Energy:
Ei = E f

mgh = 1
2 mvcm

2 + 1
2 Icmω2                           (1)

Since the disk rolls without slipping:
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vcm = Rω

ω = vcm

R
                                               (2)

(1):      mgh = 1
2 mvcm

2 + 1
2

1
2 mR2( ) vcm

R
 
 

 
 

2

= 3
4 mvcm

2

vcm = 4gh
3

(2):          ω =
4gh

3R2

  • The speed at the bottom does not depend on
the radius or the mass of the disk.

  • The speed at the bottom is less than when the
disk slides down a frictionless ramp:

v = 2gh
  • The angular speed depends on the radius but

not the mass.
  • We can still apply conservation of energy

even though there is a friction force.  The
friction force cannot dissipate mechanical
energy because it is a static friction.  The point
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in contact with the surface is at rest while in
contact with the surface.

  • A sphere or a hollow cylinder will reach the
bottom with different speeds due to different
centers of mass:

E f
sphere = 1

2 mvcm
2 + 1

2
2
5 mR2( ) vcm

R
 
 

 
 

2

mgh = 7
10 mvcm

2

vcm = 10
7 gh

E f
hollowcyl = 1

2 mvcm
2 + 1

2 mR2( ) vcm

R
 
 

 
 

2

mgh = mvcm
2

vcm = gh
H The sphere will reach the bottom first,

followed by the disk and hollow cylinder.
H The result is independent of the mass and

radius!

Example:
A sphere rolls down a ramp as shown.  The

ramp and the floor has friction to keep the ball
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rolling without slipping until it reaches the
second ramp which is frictionless.  How high on
the second ramp does the sphere rise?

h h frictionless1 2

  • The sphere rolls down the 1st ramp and
reaches some angular speed at the bottom.

  • The sphere rolls across the floor with the
same angular speed.

  • The sphere slides up the ramp with the same
angular speed because there is no torque
(friction) acting on the sphere.

Ei = mgh1                                          (1)

E floor = 1
2 mv2 + Iω 2

= 1
2 mω 2 R2 + 1

2 × 2
5 mR2 × ω 2

= 7
10 mω 2R2                                   (2)

E f = mgh2 + 1
2 Iω 2

= mgh2 + 1
2 × 2

5 mR2 × ω 2

= mgh2 + 1
5 mω 2R2                        (3)

Apply conservation of energy to (1) and (2):
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mgh1 = 7
10 mω 2 R2

ω 2R2 = 10
7 gh1                                        (4)

Apply conservation of energy to (1) and (3):
mgh1 = mgh2 + 1

5 mω 2R2

gh1 = gh2 + 1
5 ω 2R2

(4):           gh1 = gh2 + 2
7 gh1

h2 = 5
7 h1

Angular Momentum:

  • rotational analogue of linear momentum

  • must be defined with respect to some point

r
r

p

p

φ φ

  • similar to torque, two calculation methods:
L = rp⊥ = rpsin φ = rmvsinφ
L = r⊥ p = (r sinφ )p = rmvsinφ
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  • A vector quantity:
  
r 
L = r 

r ∧ r 
p 

   H   
r 
L  is perpendicular to   

r 
r  and   

r 
p 

   H direction is defined by the right hand rule
  • unit: kg ⋅m2 / s
  • A particle does not have to travel in a circle to

have angular momentum.  A particle
traveling in a straight line has angular
momentum relative to a particular point.

  • If a point that the angular momentum is
defined relative to is along the momentum
vector, then the angular momentum is zero
(r⊥ = 0).

  • For a system of particles:

  
r 
L =

r 
L i∑ =

r 
L 1 +

r 
L 2 +...+

r 
L n

Newton’s Second Law:

Translational:  
  

r 
F ext =

d
r 
p 

dt
∑

Rotational:  
  

r 
τ ext =

d
r 
L 

dt
∑
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  • The vector sum of all the torques acting on a
particle is equal to the rate of change of the
angular momentum.

  • Both τ and L must be defined relative to the
same origin.

Angular Momentum around a Fixed Axis:

r

r L
v

θ
θ

z

Angular momentum of a small element of
mass dm on the object:

 

dLz = dLsinθ

= r(dm)vsinθ
= r⊥ (dm)v

= ωr⊥
2 dm

Lz = ω r⊥
2 dm∫

Lz = Iω
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 The component of the angular momentum
along a fixed axis of rotation is just the
moment of inertia times the angular velocity.

  We often just write:
L = Iω

  • Other components often cancel by symmetry

Conservation of Angular Momentum:
  • If any component of the net external torque

on a system is zero, then the component of
the angular momentum of the system along
that axis is conserved.

  • If a rotating object can some how changes its
moment of inertia by internal forces, then the
object will spin faster or slower depending on
whether the moment of inertia decreases or
increases:

Li = L f

Iiω i = I f ω f

ω f = Ii

I f

ω i
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Example:
An ice skater would start spinning with their

arms extended away from the center of her body
(the axis of rotation).  As the ice skater pulls her
arms tight to her body, the mass is now closer to
the axis of rotation, therefore the moment of
inertia has been reduced and the skater spins
faster in order to conserve angular momentum.

Example:
A uniform thin rod of length 0.5 m and mass

4.0 kg can rotate in a horizontal plane about a
vertical axis through its center.  The rod is at rest
when a 3.0 g bullet traveling the horizontal plane
is fired into one end of the rod.  As viewed from
above, the direction of the bullet’s velocity makes
an angle of 60o with the rod.  If the bullet lodges
in the rod and the angular velocity of the rod is
10 rad/s immediately after the collision, what is
the magnitude of the bullet’s velocity just before
the impact?
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axis

L

θ

Conservation of angular momentum:
Li = L f

mbvb
L
2

sinθ = (Ir + Ib )ω f

= 1
12 mr L2 + mb

L
2

 
 

 
 

2 

  
 

  
ω f

ω f =
mbvb

L

2
sinθ

1
12 mr L2 + mb

L

2
 
 

 
 

2 = 1290 m / s

Example:
Consider a person standing on a platform

that can rotate.  The person is holding a wheel
that is spinning such that its angular momentum
is pointing upwards:

Lw
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Li = Lw

If the person turns the wheel over so that the
angular momentum of the wheel is pointing
down, what happen to the motion of the man?

Lw

The person must start rotating because the
angular momentum of the person-wheel system
must be conserved:

L f = −Lw + Lp

Lw = −Lw + Lp

Lp = 2Lw


