1) Simpson P50, problem 32.

2) This is a review problem on complex numbers. Manipulating complex numbers will become important when we discuss AC circuits.

Let: \(A = 2 + 4j \)
\(B = -1 + 3j \)
\(C = 3 - 2j \)

Find the magnitude and phase of:

a) \(A, B, \) and \(C \)

b) \((A + C)/B\)

c) \((2A - 3B^*)/(A - C^*), \) \(* = \) complex conjugate

3) A current of 1 mA charges a 1 \(\mu \)F capacitor. How long does it take the cap. to reach 10 V?

4) Simpson P103, problem 2. Also calculate \(V_{RMS} \) for the following waveforms:

![Square wave](image1.png)

![Triangle wave](image2.png)

8) Simpson P105, problem 15. The rise time is defined on page 107 of Simpson.

9) Draw the Thevenin equivalent circuit for the following two circuits:

(note: the load resistor has already been taken out of the circuit, if it were in the circuit, it would be across the \(V_{out} \) terminals).

![Circuit 1](image3.png)

![Circuit 2](image4.png)

10) Simpson P105, problem 23.