Lecture 2
Binomial and Poisson Probability Distributions

Binomial Probability Distribution

- Consider a situation where there are only two possible outcomes (a Bernoulli trial)
 - Example:
 - flipping a coin
 - head or tail
 - rolling a dice
 - 6 or not 6 (i.e. 1, 2, 3, 4, 5)
 - Label the probability of a success as p
 - the probability for a failure is then $q = 1 - p$
 - Suppose we have N trials (e.g. we flip a coin N times)
 - what is the probability to get m successes (= heads)?
 - Consider tossing a coin twice. The possible outcomes are:
 - no heads: $P(m = 0) = q^2$
 - one head: $P(m = 1) = qp + pq$ (toss 1 is a tail, toss 2 is a head or toss 1 is head, toss 2 is a tail)
 \[= 2pq\]
 - two heads: $P(m = 2) = p^2$
 - $P(0) + P(1) + P(2) = q^2 + 2pq + p^2 = (q + p)^2 = 1$
 - We want the probability distribution function $P(m, N, p)$ where:
 - $m =$ number of success (e.g. number of heads in a coin toss)
 - $N =$ number of trials (e.g. number of coin tosses)
 - $p =$ probability for a success (e.g. 0.5 for a head)

James Bernoulli (Jacob I)
born in Basel, Switzerland
Dec. 27, 1654-Aug. 16, 1705
He is one 8 mathematicians
in the Bernoulli family
(from Wikipedia).

K.K. Gan L2: Binomial and Poisson
● If we look at the three choices for the coin flip example, each term is of the form:

\[C_m p^m q^{N-m} \quad m = 0, 1, 2, N = 2 \text{ for our example, } q = 1 - p \text{ always!} \]

★ coefficient \(C_m \) takes into account the number of ways an outcome can occur regardless of order
★ for \(m = 0 \) or \(2 \) there is only one way for the outcome (both tosses give heads or tails): \(C_0 = C_2 = 1 \)
★ for \(m = 1 \) (one head, two tosses) there are two ways that this can occur: \(C_1 = 2 \).

● Binomial coefficients: number of ways of taking \(N \) things \(m \) at time

\[C_{N,m} = \binom{N}{m} = \frac{N!}{m!(N-m)!} \]

★ 0! = 1! = 1, 2! = 1·2 = 2, 3! = 1·2·3 = 6, \(m! = 1·2·3···m \)
★ Order of things is not important
◦ e.g. 2 tosses, one head case (\(m = 1 \))
□ we don't care if toss 1 produced the head or if toss 2 produced the head
★ Unordered groups such as our example are called *combinations*
★ Ordered arrangements are called *permutations*
★ For \(N \) distinguishable objects, if we want to group them \(m \) at a time, the number of permutations:

\[P_{N,m} = \frac{N!}{(N-m)!} \]

◦ example: If we tossed a coin twice (\(N = 2 \)), there are two ways for getting one head (\(m = 1 \))
◦ example: Suppose we have 3 balls, one white, one red, and one blue.
□ Number of possible pairs we could have, keeping track of order is 6 (rw, wr, rb, br, wb, bw):

\[P_{3,2} = \frac{3!}{(3-2)!} = 6 \]

□ If order is *not* important (rw = wr), then the binomial formula gives

\[C_{3,2} = \frac{3!}{2!(3-2)!} = 3 \quad \text{number of two-color combinations} \]

K.K. Gan

L2: Binomial and Poisson
- Binomial distribution: the probability of m success out of N trials:
 \[P(m, N, p) = C_{N,m} p^m q^{N-m} = \binom{N}{m} p^m q^{N-m} = \frac{N!}{m!(N-m)!} p^m q^{N-m} \]

- p is probability of a success and $q = 1 - p$ is probability of a failure

- Consider a game where the player bats 4 times:
 - probability of $0/4 = (0.67)^4 = 20\%$
 - probability of $1/4 = \left[\frac{4!}{(3!1!)}\right] (0.33)^1 (0.67)^3 = 40\%$
 - probability of $2/4 = \left[\frac{4!}{(2!2!)}\right] (0.33)^2 (0.67)^2 = 29\%$
 - probability of $3/4 = \left[\frac{4!}{(1!3!)}\right] (0.33)^3 (0.67)^1 = 10\%$
 - probability of $4/4 = \left[\frac{4!}{(0!4!)}\right] (0.33)^4 (0.67)^0 = 1\%$
 - probability of getting at least one hit $= 1 - P(0) = 0.8$

![Graph showing binomial distribution](https://example.com/graph.png)

Expectation Value

- $\mu = np = 50 \times \frac{1}{3} = 16.667...$

![Graph showing Poisson distribution](https://example.com/graph.png)

Expectation Value

- $\mu = np = 7 \times \frac{1}{3} = 2.333...$
To show that the binomial distribution is properly normalized, use Binomial Theorem:
\[(a + b)^k = \sum_{l=0}^{k} \binom{k}{l} a^{k-l} b^l\]

\[\sum_{m=0}^{N} P(m, N, p) = \sum_{m=0}^{N} \binom{N}{m} p^m q^{N-m} = (p + q)^N = 1\]

\[\text{binomial distribution is properly normalized}\]

Mean of binomial distribution:
\[\mu = \frac{\sum_{m=0}^{N} m P(m, N, p)}{\sum_{m=0}^{N} P(m, N, p)} = \sum_{m=0}^{N} m \binom{N}{m} p^m q^{N-m}\]

A cute way of evaluating the above sum is to take the derivative:
\[\frac{\partial}{\partial p} \left[\sum_{m=0}^{N} \binom{N}{m} p^m q^{N-m} \right] = 0\]

\[\sum_{m=0}^{N} m \binom{N}{m} p^{m-1} q^{N-m} - \sum_{m=0}^{N} \binom{N}{m} p^m (N-m)(1-p)^{N-m-1} = 0\]

\[p^{-1} \sum_{m=0}^{N} m \binom{N}{m} p^m q^{N-m} = N(1-p)^{-1} \sum_{m=0}^{N} \binom{N}{m} p^m (1-p)^{N-m} - (1-p)^{-1} \sum_{m=0}^{N} m \binom{N}{m} p^m (1-p)^{N-m}\]

\[p^{-1} \mu = N(1-p)^{-1} \cdot 1 - (1-p)^{-1} \mu\]

\[\mu = Np\]
Variance of binomial distribution (obtained using similar trick):

\[
\sigma^2 = \frac{\sum_{m=0}^{N} (m - \mu)^2 P(m, N, p)}{\sum_{m=0}^{N} P(m, N, p)} = Npq
\]

★ Example: Suppose you observed \(m \) special events (success) in a sample of \(N \) events

- measured probability ("efficiency") for a special event to occur:
 \[
 \varepsilon = \frac{m}{N}
 \]

- error on the probability ("error on the efficiency"):
 \[
 \sigma_{\varepsilon} = \frac{\sigma_m}{N} = \frac{\sqrt{Npq}}{N} = \frac{\sqrt{N\varepsilon(1-\varepsilon)}}{N} = \frac{\varepsilon(1-\varepsilon)}{N}
 \]

☞ sample (\(N \)) should be as large as possible to reduce uncertainty in the probability measurement

★ Example: Suppose a baseball player's batting average is 0.33 (1 for 3 on average).

- Consider the case where the player either gets a hit or makes an out (forget about walks here!).
 - probability for a hit: \(p = 0.33 \)
 - probability for "no hit": \(q = 1 - p = 0.67 \)
- On average how many hits does the player get in 100 at bats?
 \[
 \mu = Np = 100 \cdot 0.33 = 33 \text{ hits}
 \]
- What's the standard deviation for the number of hits in 100 at bats?
 \[
 \sigma = (Npq)^{1/2} = (100 \cdot 0.33 \cdot 0.67)^{1/2} \approx 4.7 \text{ hits}
 \]

☞ we expect \(\approx 33 \pm 5 \) hits per 100 at bats
Poisson Probability Distribution

- A widely used discrete probability distribution
- Consider the following conditions:
 - ★ p is very small and approaches 0
 - ♦ example: a 100 sided dice instead of a 6 sided dice, $p = 1/100$ instead of $1/6$
 - ♦ example: a 1000 sided dice, $p = 1/1000$
 - ★ N is very large and approaches ∞
 - ♦ example: throwing 100 or 1000 dice instead of 2 dice
 - ★ product Np is finite
- Example: radioactive decay
 - ★ Suppose we have 25 mg of an element
 - ⇐ very large number of atoms: $N \approx 10^{20}$
 - ★ Suppose the lifetime of this element $\lambda = 10^{12}$ years $\approx 5 \times 10^{19}$ seconds
 - ⇐ probability of a given nucleus to decay in one second is very small: $p = 1/\lambda = 2 \times 10^{-20}$/sec
 - ⇐ $Np = 2$/sec finite!
 - ⇐ number of counts in a time interval is a Poisson process
- Poisson distribution can be derived by taking the appropriate limits of the binomial distribution

$$P(m, N, p) = \frac{N!}{m!(N-m)!} p^m q^{N-m}$$

$$\frac{N!}{(N-m)!} = \frac{N(N-1)\cdots(N-m+1)(N-m)!}{(N-m)!} = N^m$$

$$q^{N-m} = (1-p)^{N-m} = 1 - p(N-m) + \frac{p^2(N-m)(N-m-1)}{2!} + \cdots \approx 1 - pN + \frac{(pN)^2}{2!} + \cdots \approx e^{-pN}$$
\[P(m,N,p) = \frac{N^m}{m!} p^m e^{-pN} \]

Let \(\mu = Np \)

\[P(m,\mu) = \frac{e^{-\mu} \mu^m}{m!} \]

\[
\sum_{m=0}^{\infty} \frac{e^{-\mu} \mu^m}{m!} = e^{-\mu} \sum_{m=0}^{\infty} \frac{\mu^m}{m!} = e^{-\mu} e^{\mu} = 1
\]

Poisson distribution is normalized

- \(m \) is always an integer \(\geq 0 \)
- \(\mu \) does not have to be an integer

★ It is easy to show that:

\[\mu = Np = \text{mean of a Poisson distribution} \]
\[\sigma^2 = Np = \mu = \text{variance of a Poisson distribution} \]

Radioactivity example with an average of 2 decays/sec:

★ What’s the probability of zero decays in one second?

\[p(0,2) = \frac{e^{-2} 2^0}{0!} = \frac{e^{-2} \cdot 1}{1} = e^{-2} = 0.135 \rightarrow 13.5\% \]

★ What’s the probability of more than one decay in one second?

\[p(>1,2) = 1 - p(0,2) - p(1,2) = 1 - \frac{e^{-2} 2^0}{0!} - \frac{e^{-2} 2^1}{1!} = 1 - e^{-2} - 2e^{-2} = 0.594 \rightarrow 59.4\% \]

★ Estimate the most probable number of decays/sec?

\[\frac{\partial}{\partial m} P(m,\mu) \bigg|_{m^*} = 0 \]
To solve this problem its convenient to maximize $\ln P(m, \mu)$ instead of $P(m, \mu)$.

$$\ln P(m, \mu) = \ln \left(\frac{e^{-\mu} \mu^m}{m!} \right) = -\mu + m \ln \mu - \ln m!$$

In order to handle the factorial when take the derivative we use Stirling's Approximation:

$$\ln m! = m \ln m - m$$

$$\frac{\partial}{\partial m} \ln P(m, \mu) = \frac{\partial}{\partial m} (-\mu + m \ln \mu - \ln m!)
= \frac{\partial}{\partial m} (-\mu + m \ln \mu - m \ln m + m)
= \ln \mu - \ln m - m + \frac{1}{m}
= 0$$

$$m^* = \mu$$

The most probable value for m is just the average of the distribution.

If you observed m events in an experiment, the error on m is $\sigma = \sqrt{\mu} = \sqrt{m}$

This is only approximate since Stirlings Approximation is only valid for large m.

Strictly speaking m can only take on integer values while μ is not restricted to be an integer.
Comparison of Binomial and Poisson distributions with mean $\mu = 1$

For large N: Binomial distribution looks like a Poisson of the same mean