1) Simpson P105, problem 19 (use Fig. 2.4.2).

2) Consider the following two circuits.

\[R \quad C \quad V_{\text{in}} \quad C \quad V_{\text{out}} \]

\[V_{\text{in}} \quad V_{\text{out}} \]

The input voltage looks like:

\[V_0 \]

\[-V_0 \]

\[\text{period} \]

Plot the output voltage for \(RC = T/20, T/2, 20T \), where \(T \) = period, for both circuits (6 plots in all). Of the six cases which output is most like integration, and which is most like differentiation of the input signal?

3) Show that the RMS current in the 1 k\(\Omega \) resistor is 6.5 mA. If the AC voltage source was replaced by a battery what would the current in the resistor be?

\[L = 10 \text{ mH} \]

\[C = 0.1 \mu\text{F} \]

\[\text{10 V RMS} \]

\[f = 1 \text{ kHz} \]

\[\text{R} = 1k\Omega \]

\[L = 250 \text{ mH} \]

4) We want to design a tuner (actually a band pass filter) for an AM radio station whose frequency is \(f = 700 \text{ kHz} \). The tuner must be able to detect the AM sidebands which are located at \(\pm 5 \text{ kHz} \) (695 kHz and 705 kHz) from the central frequency. An easy way to achieve the above is to use a series RLC circuit and take \(V_R \) for the output voltage. The resonant frequency of this circuit is that of the radio station. The rest of the circuit parameters are fixed by matching the 3
dB points of the circuit to the upper and lower sidebands. Calculate the value of R and L necessary for the above circuit if $C = 300$ pF.

5) For each of the following circuits identify the corresponding magnitude Bode plot. For most of the cases the Bode plot can be identified by considering the limits $\omega \to 0$ and $\omega \to \infty$.

6) For each of the six circuits in problem 5) find an expression for the gain $|V_2/V_1|$ in terms of R, L, and C.

Physics 617: