Basic Physics Processes in a Sodium Iodide (NaI) Calorimeter

NaI is a “scintillator”. As a charged particle traversing the NaI it loses energy. The energy is absorbed by the molecules and puts the NaI molecules into an excited state. NaI gives off light (“scintillates”) when it de-excites back to the ground state.

The amount of light given off by NaI is proportional to the amount energy absorbed. The light yield is ~ 1 photon produced per 100 eV deposited in NaI (1 MeV = 10⁴ γ’s). However, not all γ’s are collected as the efficiency of the photocathode is ~ 20%.

Photoelectric Effect
γ absorbed by material
electron ejected

Compton Scattering
γe⁻→γe⁻
“elastic scattering”

Pair Production
γ→e⁺e⁻
creates anti-matter

hv < 0.05 MeV
0.05 < hv < 10 MeV
hv > 10 MeV
γ-ray must have E > 2mₑ
How do we get a PEAK in the energy spectrum?

A peak in the energy spectrum corresponds to the case when all of the γ-ray’s energy is absorbed in the NaI calorimeter.

- **Photoelectric effect and electron stops in NaI.**
- **Compton scatter followed by photoelectric effect.**
- **Pair production**
 - e^- is absorbed in NaI
 - e^+ annihilates into 2 γ’s
 - γ’s undergo photoelectric effect

Perfect energy resolution:
- All γ energy totally absorbed

Actual energy resolution:
- Not all γ energy totally absorbed
Cs137 γ-ray Spectrum

β decay gives off electrons with a range of energies
$E_{\gamma} = 662$ keV
γ decay gives off a monochromatic photon
$E = 662$ keV

K-shell x-rays
$E_{\gamma} \sim 35$ keV

Compton scatterings
Compton Edge

$E_{\gamma} = 184$ keV
180° backscatter

$E_{\gamma} = 662$ keV photopeak

$E_{\gamma} = 662$ keV

β decay gives off electrons with a range of energies
$E_{\gamma} = 514$ keV, 1170 keV

γ decay gives off a monochromatic photon
$E = 662$ keV
Co60 and Na22

Both Co60 and Na22 have complicated spectra since their γ's have enough energy to undergo pair production.

Will have “escape” peaks from positron annihilation

$E = E_\gamma - (\text{rest energy of electron})$

$E = E_\gamma - 2\times(\text{rest energy of electron})$

Co60 gives off γ’s which cannot escape, so both γ’s are detected.

Na22 gives off a positron which will annihilate and produce 2 γ’s. But only one γ will be detected.