New Results on Opto-Electronics

K.K. Gan
The Ohio State University

February 19, 2002
Outline

- Introduction
- Result on VDC/DORIC-D3
- Result on Post-Irradiation VDC/DORIC-I1
- Results on VDC/DORIC-I2
- Improvements in VDC/DORIC-I4
- Summary
Introduction

● VCSEL Driver Chip (VDC):
 ✤ convert LVDS signal into single-ended signal appropriate to drive VCSEL

● Digital Opto-Receiver Integrated Circuit (DORIC):
 ✤ decode clock and command signals from PIN diode
Opto-electronics Team

● The Ohio State University:

● Siegen University:
 ✫ Michael Kraemer, Joachim Hausmann, Martin Holder, Michal Ziolkowski
Results on VDC/DORIC-D3

- **VDC-D3:** performance is satisfactory
- **DORIC-D3:**
 - 2 dice in packages + one die on opto-board II
 - 24 µA minimum PIN current for no bit errors
 - uniformly low PIN current thresholds
 - DC feedback is working
Opto-Board Prototype III

- design for VDC-D3/DORIC-D3 and 4-channel VDC-I2/1-channel DORIC-I2
- compatible with VDC/DORIC-I3
- contain 7 opto-links for use in barrel and disk
- use SCT style opto-packs
- use 80-pin connector
- fabricated using FR4
- opto-board is working as designed
 - PIN current threshold for no bit errors is comparable with packaged dice
Opto-Board Prototype IV

- design for 4-channel VDC/DORIC-I4
- contain 7 opto-links for use in barrel and disk
- use 8-channel opto-packs
- use 80-pin connector
- last submission before using BeO
- to be designed for BeO but tested in FR4
- expect submission in summer 2002
Irradiated Opto-Board with VDC/DORIC-I1

Opto-packs

Thermocouple
Cold irradiated VCSELs produce much more light
turning over at high I_{set} is due to 10 Ω in series used in measurement

dependence of bright current vs I_{set} is as expected
Ripple in VDC-I2 Current Consumption

- VDC-I2 has more balance current consumption with VCSEL on and off
Current Consumption of VDC-I2

- current consumption of VDC-I2 is consistent with expectation
Clock Duty Cycle vs I_{set}

- clock duty cycle close to 50% at 10 mA bright current
Fall/Rise Time vs I_{set}

- fall/rise times somewhat above spec. (1 ns)

K. K. Gan

ATLAS Pixel Week
DORIC-I2

- minor bugs due to clamping/protection diodes:
 - VPIN is limited to 3.2 V
 - current in diode contribute to measured minimum PIN current for no bit errors
 - CMOS driver is powered at 1.7 V via diode to digital VDD
 - CMOS driver can’t be turned off
 - contribute noise to pre-amp
 - minimum PIN current for no bit errors:
 - 27 µA vs 24 µA with diode blown
 - uniformly low PIN current thresholds
 - DC feedback is working!
DORIC-I2

- larger time constant in pre-amp successful prevents feedback loop from oscillating even with no input!
- larger time constant in delay control circuit successful prevents delay control circuit from oscillating!
- clock duty cycle: 46/50% on two DORIC tested
Improvements in VDC-I4

- convert VDC-I3 to be compatible with common cathode VCSEL array
Bright and Dim Current Consumption vs I_{set}

- VDC-I3/I4 has nearly equal current consumption
VDC Current Consumption

- simulations of VDC-I1/I2 reproduce observation
- VDC-I3/I4 consumes significantly less current
Improvements in DORIC-I4

● improved delay control circuit:
 ◆ centers duty cycle of recovered clock at 50%
 ◆ limits range of delays to prevent locking of recovered clock at half or twice frequency
 ◆ add reset for slow and controlled recovery

● optimized timing:
 ◆ two small delays added

● optimized internal digital signals:
 ◆ change edge detector output buffer resistor from 20K to 10K
 ➡ smaller voltage swing
 ➡ symmetric threshold crossing for +/- signals
 ◆ stronger exclusive OR output buffer for square recovered clock
Improvements in DORIC-I4 (cont.)

- improved pre-amp:
 - half the rise time
 - working on reducing noise
- optimize pre-amp design to be compatible with common anode PIN array
- submit a MPW run on April 15
Summary

● important to keep opto-board cold for maximum light output
● performance of VDC/DORIC-I2 is satisfactory